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Abstract. In the United States, congressional redistricting follows a de-
cennial Census. Gerrymandering can result from selection of district lines
regardless of political parties. Understanding the relationships between
the multiple dimensions in electoral data is a core goal of gerrymandering
analysis. In this paper, we analyze patterns of gerrymandering in elec-
tion data using a hybrid tree visualization technique that supports both
overview and drill-down into a hierarchy of multidimensional relation-
ships in that data. Visualization of hierarchical data is of major interest
in information visualization. The technique utilizes a left-to-right node-
link diagram to show overall hierarchical structure. Nodes in the diagram
depict the levels in the dimensional hierarchy. Each node is rendered as
an embedded view that shows its particular dimensional combination.
Edges directly connect the contents of the embedded views to provide
visual bridges that aid navigation and understanding of dimensional rela-
tionships. We demonstrate the utility of this hybrid technique is demon-
strated through two use cases. This work aims to both ground and inspire
the design of future visualizations for exploring gerrymandering.

Keywords: Tree visualization · Embedded views · Gerrymandering.

1 Introduction

The redrawing of electoral district lines following each decennial United States
Census can significantly impact the outcome of elections that follow. Gerryman-
dering is a phenomenon in which district lines are drawn to favor a political party
or certain groups. The electoral data of interest in gerrymandering analysis is
a multidimensional mix of quantitative, categorical, temporal, and hierarchical
geographic data types. Each state has multiple district cycles, and each district
cycle involves multiple districts in that state. Gerrymandering analysis endeavors
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to understand such data by examining combinations of these dimensions includ-
ing the various ways they may be meaningfully filtered, grouped, and aggregated.
For this utility study, we mapped the data into a four-level hierarchy that pro-
gresses downward from election year to political party to redistricting cycle to
district-level details. Exploring and analyzing these levels is critical to under-
standing the forms and effects of gerrymandering. Equipping gerrymandering
analysts with the ability to drill down into different dimensional combinations
of the data hierarchically is thus a key requirement for visual analysis tool design.

Visualization can help analysts to have insights, recall information, and com-
municate ideas about data. Hierarchical visualization techniques allow analysts
to explore combinations of data dimensions by drilling down into those combina-
tions visually. Multiple views facilitate identification of patterns within and com-
parison between such combinations. We integrate these two common approaches
by embedding the views into the hierarchical visualization’s nodes themselves.
This approach offers a unified overview and drill-down for exploring different
combinations of dimension. We enhance this integration by providing visual
bridges that directly position and link the incoming edges from parent nodes
and the outgoing edges to child nodes in relation to the corresponding visually
encoded data in the embedded views. While we do not present usability results
here, we hypothesize that this re-purposing of edges as a kind of visual linking [7]
can improve interaction with and comprehension of the overall structure and the
context of details in node-link styles of hierarchical visualizations. In this paper,
we explore the potential of our integrated and enhanced technique for general
application to multidimensional data through specific application to represen-
tative use cases in gerrymandering analysis. In particular, we demonstrate the
technique’s utility for analysis of key dimensional combinations in electoral data.

2 Related Work

This paper probes regions of the visualization design space that focus on mixed
multidimensional data including hierarchical visualization and embedded views.
The visualization design space has been extensively modeled and is increasingly
populated. For sake of limited space we attempt only a cursory coverage here.

For general visualization design, Card and Mackinlay’s framework offers guid-
ance for the design of information visualizations with emphasis on the mapping
between data and graphical context [5]. The visualization design space can be
defined in terms of chart types and their combinations and enhancements [10,
9]. Guidelines for multiple view designs consider cognitive aspects including the
effort required for comparison, context switching, user’s working memory, and
learning [33]. Gleicher, et al. consider designs for visual comparison [16] and
propose a framework to design multiple views for comparison tasks [15]. It is
important to consider both spatial and data relationships in composite visu-
alizations [20]. More specifically for gerrymandering analysis, visualization of
geospatial network information typically involves composition of geographic and
network representations [25].
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Diverse composite visualizations exist for hierarchical data. Tuples and at-
tributes in tabular data can be divided to form an aggregation hierarchy, such
as in breakdown visualization that supports drill-down from overview to de-
tails across hierarchies through small multiple views [8]. A node-link diagram
juxtaposed with heatmap views visualizes sequences of transactions in informa-
tion hierarchies [4]. A phylogenetic tree visualization superimposed in a map
links with geographic locations through a linear geographic axis [24]. TreeVer-
sity2 [17] presents a space-filling visualization called StemView that nests bars at
each level of an icicle plot. VEHICLE [23] embeds hierarchical stacked bar charts
into a node-link diagram for exploring conflict event data, and uses a radial tree
layout with glyphs as nodes to visualize hierarchical information. DimLift [14]
utilizes dimensional bundling and applies multiple composition and interaction
techniques to facilitate the exploration of hierarchical data.

Hierarchical visualization techniques are organized primarily in terms the
variety of ways to represent nodes and edges to capture structural relation-
ships and data details [27]. Common techniques, such as node-link diagrams and
treemaps [29], can be combined to create hybrid techniques such as elastic hier-
archies [35]. The navigability and comprehensibility of node-link techniques can
be improved through techniques such as hierarchical edge bundling to reduce
visual clutter amongst edges [19]. Aggregation of edges can also be calculated in
data space as a precursor to their representation in visual space [13]. The hybrid
hierarchical visualization technique described in this paper utilizes both data
and visual aggregation. Each level of the hierarchy involves dimension-specific
data filtering, grouping, aggregation, and other statistics to calculate the data to
show in each node/embedded view. Each embedded view effectively provides a
visual aggregation over a set of node siblings. Visual bridging helps to convey the
correspondence between the individually visualized edges and the corresponding
features in the embedded views as visual aggregates.

3 Gerrymandering

Gerrymandering refers to the political manipulation of district boundaries to ad-
vantage a political party or group. Redrawing district lines can have intended or
unintended consequences, such as letting politicians choose their voters, packing
partisans, splitting communities, diluting minority votes, etc. [22]. When states
redraw their districts, they may consider and balance various criteria. Common
criteria such as equal population, minority representation, contiguity, compact-
ness, communities of interest, etc. can be reviewed to ensure fair redistricting.

There are a variety of alternative measures of continuity and compactness
for comparing the redistricting maps drawn by independent redistricting com-
missions to those by state legislatures [12]. In addition to measures based on re-
districting criteria, the seats-votes relationship was highlighted for assessing the
swing ratio and partisan bias of redistricting plans [32]. Moreover, the measure
of electoral competition has contributed to comparison of redistricting plans. A
recent study suggests that independent redistrictors may not increase electoral
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Table 1. Precinct-Level data for the 2016 and 2020 elections in Oklahoma with con-
gressional districts for the 2010 and 2020 redistricting cycles.

District 2010
Cycle

District 2020
Cycle

GEOID20 Party
Votes
2016

Votes
2020

2 2 40079000102 DEM 75 82

2 2 40079000102 REP 385 412

3 3 40113000113 DEM 17 14

3 3 40113000113 REP 37 40

3 3 40113000102 DEM 31 24

3 3 40113000102 REP 126 167

competition to achieve political neutrality [18]. Most recently, DeFord, Eubank,
and Rodden [11] introduced a measure, partisan dislocation, to indicate cracking
and packing by considering a voter’s geographic nearest neighbors.

Rather than developing measures, researchers use automated redistricting
algorithms to generate redistricting plans and perform a comparative analysis
to reveal gerrymandering. Two types of redistricting algorithms that are com-
monly used in the redistricting literature are partitioning algorithms and swap-
ping algorithms [21]. Besides these two types of approaches, a divide and conquer
redistricting algorithm [21] integrates partitioning and swapping elements. Au-
tomated districting simulations that are blind to partisanship and race are used
to measure the unintentional gerrymandering that can emerge from patterns of
the geographic distribution of voters with regard to their partisanship [6].

Gerrymandering statistics can be difficult to interpret. Non-experts in par-
ticular may shy away from quantitative metrics that are hard to fully compre-
hend [31]. Our work is motivated by calls to make gerrymandering statistics more
visually interpretable and less confusing for both experts and non-experts [22].

4 Data Model in Gerrymandering

In order to visually explore and analyze the precinct data as shown in Table 1, we
utilize the features of our visual hierarchy design for gerrymandering analysis. It
shows the votes for each party per precinct in the state of Oklahoma in the 2016
and 2020 elections. The data includes congressional districts for two redistricting
cycles. For example, the 2010 cycle for the congressional districts in Oklahoma
starts on May 10, 2011 and ends on Dec 31, 2021, whereas the 2020 cycle is from
Nov 22, 2021 to Jun 30, 2031 [1]. We compare statistics between the two major
parties. For example, the party with a higher voting share percentage (VSP) in a
district, which is calculated by Equation (1) given i ∈ precincts and j ∈ parties,
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wins the election for a House seat in the U.S. Congress.

V SP (votes|party = j) =

∑
i votesi ∧ party = j∑

i votesi
. (1)

Relationship R({votes, party}) indicates the relationship between the votes
variable and the party variable as shown in Equation (2). Here we use voting
share percentage as the aggregate measure over precincts, and apply a relation-
ship to it, such as V SP (votes|party = Dem) > V SP (votes|party = Rep).

R({votes, party}) : V SP (votes|party = a) > V SP (votes|party = b). (2)

The relationship can be greater than (>) or smaller than (<), and we exclude
the possibility of a tie (=) in a two-party contest.

In the gerrymandering analysis, the state relationship Rstate({votes, party})
indicates which party has a higher voting share percentage in the state level data,
while a district relationship Rdistrict({votes, party}) is the relationship in the
district-level. Congressional districts are divisions of a state. Seeing the relation-
ship in each district could provide an important perspective on disparate results
from elections. Given these relationships, a distance function can be applied to
measure if two relationships Rstate({votes, party}) and Rdistrict({votes, party})
are the same or reversed:

d(Rstate({votes, party}), Rdistrict({votes, party})) =

{
0 if same relationship

1 if reverse relationship

(3)
For example, if Rstate({votes, party}) is the state relationship that Repub-

licans have a higher voting share percentage and Rdistrict({votes, party}) is a
district relationship that has lower voting share percentage for Republicans in a
specific district, the distance between the two relationships is 1. Using a distance
function alone can not reveal if a districting plan of a state is gerrymandered.
One approach to assess gerrymandering is to examine all districts’ distances.
We propose a summary function S, defined in Equation 4, using relationship
distance d and |D| as the number of the unique distinct values in a redistricting
plan. The value of S indicates what proportion of the districts do not follow
the state relationship. If we compare the summary of district distances with the
voting share percentage of the minority party at the state level, the disparity
suggests that the districting plan is gerrymandered. For example, the minority
party has a 40% voting share percentage at the state level, but the sum of the
distances is 0.6 in a state with five districts. The sum indicates that the minority
party should win the majority of the seats (3 out of 5). The different outcomes
(i.e., 40% vs 60%) may be caused by gerrymandering.

S(votes, party,D) =
1

|D|
∑

∀Di∈D

d(Rstate({votes, party}), RDi({votes, party}))

(4)
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For the relationship, we apply the winning margin as shown in Equation 5
in the study of gerrymandering. The winning margin helps to examine the com-
petitiveness of federal elections. By comparing the competitiveness of different
redistricting plans, analysts can find additional support for the hypothesis that
a redistricting plan is a partisan gerrymander.

V oteMargin = |V SP (votes|party = a)− V SP (votes|party = b)| (5)

5 Visual Design

Our visualization technique is designed for visualizing relationships in hierarchi-
cal data structures that embed complex node information. To explore relation-
ships, a node-link diagram is used to represent overall hierarchical structure.

The hierarchical structure is organized into a three-level tree structure as
shown in Figure 1. The state relationship Rstate({votes, party}) maps to the
node in the first level of the tree structure, and the Rdistrict({votes, party})
district relationships map to the nodes in the third level. The different district
cycles are the nodes in the middle level of the tree, and they are connected to
the state relationship and their own district relationships. To differentiate the
relationship levels from the district cycle level in the node-link diagram, we use
different shapes to encode their nodes. For example, circle nodes represent dis-
trict cycles, and square nodes represent relationships in Figure 1. There are two
reasons why we choose a node-link diagram over other hierarchical visualization
techniques [28] like treemaps [29], Sunburst [30], or icicle plots [34] as a base
representation. First, the non-leaf nodes for district cycle components are more
expressive in a node-link diagram than in treemaps that strongly emphasize leaf
nodes over all other nodes. Second, node-link diagrams have more flexible lay-
outs than space-filling methods [26]. For example, it is easy to adjust the widths
of each level in a node-link diagram to make room for embedded views.

We embed multiple views into nodes in our tree visualizations, and each
view shows a different dimensional combination that relates to the nodes. The
visualizations provide the visual bridging that analysts can follow from the view
of the parents to the view of the children. The visual bridging also indicates
the relationship between the nodes in the host tree visualization and the visual
objects in the embedded view.

Color is a powerful visual channel to guide attention. We try to pick better
color schemes for different components in our hybrid visualization system. First,
we consider the well-known colors in our application domain which is political
science. The color blue is associated with the Democratic Party, and the red rep-
resents the Republican Party. The political colors are reserved for the embedded
charts that convey political parties’ information. Next, we select a yellow-green
sequential color palette to encode the distance and summary distance values in
both tree nodes and relevant elements in the embedded view. The color green
and yellow are visually distinguishable from the predefined political colors. The
yellow-green sequential color palette is more easily distinguishable between low
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Fig. 1. The hierarchical view design for the gerrymandering analysis.

distance values and high distance values than the green only sequential color
palette, especially when the distances in the leaf nodes are either 0 or 1. Last
but not least, we exclude the predefined colors above and use other colors based
on different hue channels for the charts in the hybrid visualization.

6 Analysis Examples

In this section, we describe how the visualization technique can be applied to
the electoral precinct data of the U.S. presidency from Dave’s Redistricting
App [2] and congressional redistricting data from All About Redistricting [1].
For our analysis, we applied the 2016 and 2020 presidential vote share data at
the precinct level. The election data was disaggregated to 2020 census blocks
following the method described by Amos, et al. [3].

6.1 Evaluating the Efficiency Gap

This use case was inspired by an evaluation of the efficiency gap [31]. The re-
lationship between seats and votes in the two-party system [32] could indicate
the efficiency gap. We inspect changes of the efficiency gap before and after
the redistricting plan. We start by looking at the structure of the hierarchical
data. Our tree visualization has four levels, as shown in Figure 2(a). Looking
at the heatmap view of the root node, we observe that there are two relation-
ships in the electoral data set. The first relationship is R({Votes2016, Party}),
representing the relationship extracted from the precinct-level votes data of the
2016 presidential election and each party’s information. The second relationship
R({Votes2020, Party}) applies to the 2020 presidential election. In the first level
of the tree, the two relationships are split into corresponding branches. The next
level shows the district cycles, in which we see that the congressional districts for
each election year are split into 2010 and 2020 cycles. By comparing these two
cycles, we can gain insight into how the new redistricting plan has an impact on
the election. The last level shows the leaf nodes that present the congressional
districts for each combination of a district cycle and an election year.

We further investigate the details in each tree level as shown in Figure 2(b). In
the first level, the mean distance aggregated for the relationship R({Votes2020,
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Fig. 2. An example demonstrating the design of the visualization for evaluating the
efficiency gap. (Note that here we root the tree one level higher to add a summary
of the state relationships.) The user first visualizes an initial tree visualization (a).
Later, the user selects three views to embed into the tree visualization (b): a bar chart
comparing vote shares between two parties, a scatterplot showing summary statistics,
and a map view providing more context for districts in New Jersey.

Party}) is 0.208. By clicking the show view button for views in the first level,
we see that the state relationship Rstate({V otes2020, Party}) is that Democrats
receive a higher vote share than Republicans in the presidential election (58%
vs 42%). At the district cycle level, a scatterplot shows the statistics calculated
for the two districting cycles. We find that the mean distance in the 2020 dis-
trict cycle is 0.167. Comparing this number to the vote share for Republicans,
it is obvious that the discrepancy between overall statewide support (42%) for
Republicans and the proportion of their winning districts (16.7%) indicates par-
tisan bias and hence supports a contention of gerrymandering. In addition, we
see that the 2020 district cycle has a lower mean distance than the 2010 district
cycle. This shows that partisan bias is higher under the new districting plan.

To understand the disparity and examine the congressional district lines, we
inspect individual districts in the leaf nodes. We observe that the distances for
District 2, 3, and 4 in the 2010 cycle are equal to 1, which represents a reverse
district relationship compared to the state relationship. In contrast, the districts
whose distance is 1 in the 2020 district cycle are District 2 and District 4. Since
District 3 is no longer showing the reverse relationship, we investigate several
aspects of gerrymandering. One crucial aspect relating to gerrymandering is
whether the congressional district lines of the flipping district are drawn differ-
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Fig. 3. Example of the hybrid tree visualization to assess electoral competition. (Note
that here we root the tree one level higher to add a summary of the state relationships.)
The user selects a heatmap view in the first level, a grouped bar chart in the district
cycle level to explore changes in competitiveness between the two districting cycles,
and a strip plot in the leaf level to show vote details for districts in Oklahoma.

ently in the new districting plan. The embedded map view clearly shows that
the congressional district lines for District 3 are quite different between the two
district cycles. Another aspect is to check the degree of partisanship. Switching
to a strip plot at the leaf level, we find that the vote shares for the two parties in
District 3 are extremely close in the 2010 cycle (50.1% Republican versus 49.9%
for Democrat), while the vote shares in the 2020 cycle are much further apart
(58.1% Democrat versus 41.9% Republican). Meanwhile, the vote shares for the
Democratic party in the adjoining districts including Districts 2 and 4, decreased
in the 2020 cycle, whereas the vote shares for the Republican party increased.
This indicates possible gerrymandering tactics like cracking and packing. In this
case, the Republican voters may have been cracked from District 3 into District
2 and 4; consequently, those votes are diluted. Concomitantly, the Democratic
voters from District 2 and 4 might have been packed into District 3.

Through this exploration, we gained an understanding of how district lines
are drawn and what consequences may affect future elections. This use case val-
idates the effectiveness of the visualization to identify potential gerrymandering,
and suggests further exploration. Our visualization supports smooth navigation
and drill-down into each level of the hierarchy. The features of the visualization
thus facilitate visual identification and comparison for gerrymandering analysis.

6.2 Assessing Electoral Competition

In the second use case, we demonstrate how we utilize our visualization to in-
vestigate the redistricting plan that appears to impact electoral competition.
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Figure 3 shows the hybrid tree visualization for the presidential election in
Oklahoma. In this case, the root level and the first level are not connected by
lines; instead, the two duplicated and highlighted views in the first level implicitly
represent the parent-child relationships with the root node. The mean distances
of the internal nodes and the distances of the leaf nodes are all 0, as indicated by
their respective fill colors. This clearly indicates that the district relationships
are compatible with the state relationship in which the Republican party always
wins every district in Oklahoma.

Since we are particularly interested in the recent election, we track the lower
branch which presents the relationship R({Votes2020, Party}). When we look
at the bar chart at the district cycle level, we find that one highly competitive
district (i.e., a winning margin of 0% to 10%) in the 2010 cycle becomes less
competitive in the 2020 cycle; the number of moderately competitive districts
(i.e., a winning margin of 10% to 20%) changes from 0 to 1 after redistricting.

To delve more deeply into these changes, we more closely examine individual
districts’ voting shares. We embed a strip plot in the leaf level, and examine the
changes of the voting shares for the two parties. We find that the competition
is close in District 5 in the 2010 cycle (i.e., Republican 52.9% vs. Democrat
47.1%), and that the difference between the shares of the votes for the two parties
becomes larger in the 2020 cycle (i.e., 59.5% Republican vs. 40.5% Democrat).
This indicates that District 5 is probably safer and more secure for Republicans
after redistricting. In addition, we find that District 3, which is a neighbor of
District 5, shrinks its winning margin in the 2020 district cycle. We assume that
the district lines for both districts were redrawn in the new redistricting plan.
To confirm this, we switch to map views in the leaf nodes and observe a notable
difference in the border between the two districts.

Our findings in Oklahoma are a strong sign that gerrymandering can occur
even without overturning elections. We conclude that Districts 3 and 5 were
likely gerrymandered to protect Republican candidates, especially in District 5.
The embedded views show different facets of data for their respective purposes,
and visual bridging enables an understanding of the relationships between them.
More generally, flexible view choice allows for alternative designs that scale to
accommodate two or more parties and few or many districts, such as by adding
visual links from district nodes to map regions in Figure 2(b). Overall, our hybrid
tree visualization technique aids in exploring hierarchical structure in gerryman-
dering and gaining a deeper understanding of the underlying information.

7 Conclusion

In this paper we introduce a hybrid tree visualization technique to explore hi-
erarchical structure in the gerrymandering domain. Through two use cases, we
demonstrate that the technique allows users to gain insights about gerrymander-
ing of congressional districts. The use cases indicate that the hybrid visualiza-
tions enhance not only the exploration of the hierarchical structure but also the
understanding of the complex relationships within and between the underlying
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data dimensions. We plan to continue this work on utility assessment presented
here with usability studies of the two visualizations and others in realistic appli-
cation by expert and casual analysts in the gerrymandering domain.
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