What data should I include in my POS tagging training set?

Zoey Liu¹ Masoud Jasbi² Christan Grant¹ Kenji Sagae² Emily Prud'hommeaux³

- ¹ University of Florida
- ² University of California, Davis
- ³ Boston College

Motivation

Building training sets for understudied, endangered, and Indigenous languages faces **resource limitations** and **ethical constraints**.

Research Question: How can we construct effective POS tagging training sets when:

- Annotated data is scarce
- Manual annotation is expensive
- Data sharing may be ethically restricted

Why POS Tagging?

- Fundamental for language documentation
- Used in typological research, second language learning, pedagogical materials
- Data available across languages (Universal Dependencies)

Approach

We compared **three data-selection methods** across **60 languages** (112 treebanks, 12 families):

1. In-Context Learning (LLMs)

- Model: GPT-4.1-mini via API
- Data: 1,000 randomly sampled tokens as prompt examples
- Cost: ~\$4 per language

2. Active Learning (AL)

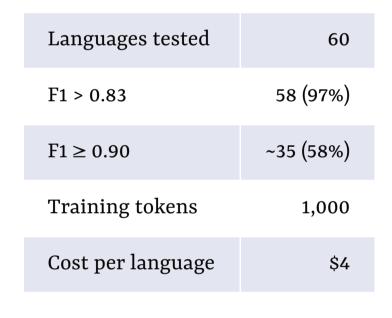
- Model: Conditional Random Fields (CRF)
- **Strategy:** Uncertainty sampling selects sentences with lowest confidence
- **Process:** Iteratively adds ~500 tokens per iteration
- Initial set: 1,000 tokens

3. Random Sampling (Baseline)

- Uniformly samples ~500 tokens per iteration
- Baseline for comparison with Active Learning

Data Source: Universal Dependencies v2.14

Results: In-Context Learning



Performance Examples

- French: F1 = 0.97
- English: F1 = 0.93
- Bulgarian: F1 = 0.97
- Hindi: F1 = 0.90Irish: F1 = 0.90

Key Insight

For communities where data sharing via API is ethical and acceptable, LLMs provide excellent first-pass performance with minimal annotation cost.

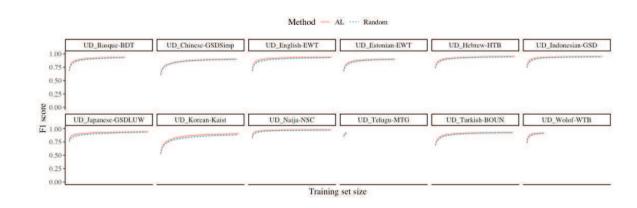


Figure 1: F1 scores across diverse language families

Results: Active Learning

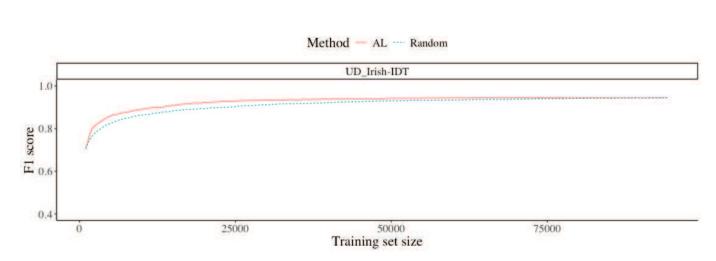


Figure 2: Irish (endangered, EGIDS 6b): AL vs Random Sampling

Key Observations

- Rapid growth: F1 increases quickly until 4,500-5,500 tokens
- Irish example:
- 1,000 tokens → F1 = 0.71
- 4,500 tokens → F1 = 0.85
- 12,000 tokens → F1 = 0.90
 Plateau: Performance stabilizes after ~20,000 tokens

Statistical Validation

Use LLMs to bootsrap low-resource language documentation.

GPT-4.1-mini with 1,000 tokens achieves F1 > 0.83 in 58/60 languages

Active Learning learns 2x faster than random sampling

Sweet spot: 4,500-5,500 tokens for reasonable F1 with Active Learning

We used **Bayesian growth curve modeling** to quantify learning speed:

 $F1 = \alpha - (\alpha - \beta)e^{-(\gamma t)^{\delta}}$

Parameters:

- α = upper asymptote (max F1)
- β = lower asymptote (starting F1)
- γ = growth rate (learning speed)
 δ = shape parameter

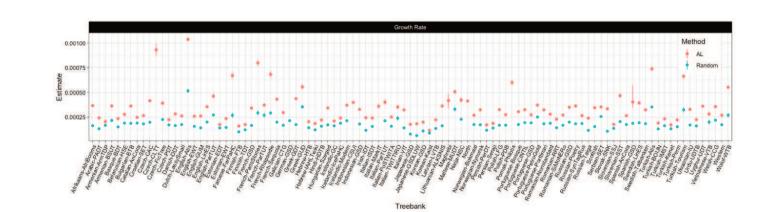


Figure 3: Growth rates: AL consistently faster than random sampling

Finding

Active Learning reaches target F1 scores approximately 2x faster than random sampling across all 112 treebanks.

What Affects Tag Performance?

Mixed-effects regression on individual POS tag F1 scores:

Factor	Effect	Interpretation	
Word Entropy	β = +0.036**	More diverse vocabulary → Better	
Syntax Entropy	β = -0.05**	More diverse syntax → Worse	
Tag Probability	$\beta = -0.17$ (n.s.)	No significant effect	

KL-Divergence Analysis

- Training sets more similar to test distribution \rightarrow higher F1
- As training size ↑, KL-divergence ↓
- Negative correlation: KL-divergence vs F1 (β = -5.35, p < 0.001)

Recommendations

Scenario	Strategy	Training Size	Effort
Data sharable via API	GPT-4.1- mini	1,000 tokens	Low cost (~\$4)
Data must remain local	Active Learning	4,500- 5,500 tokens	Moderate (2x faster)
Highly restricted / Maximum accuracy	Random Sampling	20,000+ tokens	High (slower convergence)

Data Sovereignty Matters

Many Indigenous communities require data to remain within community control, making Active Learning the ethical and effective choice.

Conclusions

For Ethical Data Sharing

LLMs can bootstrap annotation with minimal data:

- Only 1,000 tokens needed
- F1 > 0.83 in 97% of tested languages
 Cost-effective (~\$4 per language)
- Cost-effective (~\$4 per language)

For Data Sovereignty

Active Learning maximizes efficiency while respecting community values:

- Reaches F1 > 0.85 with 4,500-5,500 tokens
 2x faster learning than random sampling
- 2x faster learning than random samplingData remains under community control

Methodological Contribution

• First large-scale cross-linguistic AL study with statistical

- validationGrowth curve modeling provides rigorous quantification
- Framework applicable to other low-resource NLP tasks

Contact: christan@ufl.edu|liu.ying@ufl.edu

Code: github.com/ufcompling/unlabeled_pos

Paper: ACL Anthology 2025.findings-emnlp.448

QR Code: Scan for full project details at ufdatastudio.com

