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Abstract

Large Language Models (LLMs) are power-001
ful in-context learners, achieving strong perfor-002
mance with just a few high-quality demonstra-003
tions. However, fairness concerns arise in many004
in-context classification tasks, especially when005
predictions involve sensitive attributes. To ad-006
dress this, we propose JUDGE—a simple yet007
effective framework for selecting fair and rep-008
resentative demonstrations that improve group009
fairness in In-Context Learning. JUDGE con-010
structs the demonstration set iteratively using011
a greedy approach, guided by a small, care-012
fully selected jury set. Our method remains013
robust across varying LLM architectures and014
datasets, ensuring consistent fairness improve-015
ments. We evaluate JUDGE on four datasets016
using four LLMs, comparing it against seven017
baselines. Results show that JUDGE consis-018
tently improves fairness metrics without com-019
promising accuracy.020

1 Introduction021

A key capability of Large Language Models022

(LLMs) is in-context learning (ICL) — the ability023

to learn from examples provided within a prompt,024

without requiring parameter updates (Brown et al.,025

2020; Dong et al., 2022). While research has ad-026

vanced our understanding of ICL and techniques to027

enhance its effectiveness, a critical open question028

remains: how should we select fair and represen-029

tative demonstration examples? This question be-030

comes particularly critical in high-stakes domains031

where predictions directly impact human lives.032

Consider a parole board using an LLM to assess033

recidivism risk. The model’s predictions are shaped034

by the examples it is shown—if those examples re-035

flect historical biases or overlook key rehabilitation036

factors, the system may produce plausible-looking037

predictions that perpetuate or amplify existing dis-038

parities. In sensitive domains like criminal justice,039

healthcare, and hiring, the selection of demonstra-040

tions directly influences both predictive reliability 041

and equitable decision-making. 042

Existing demonstration selection strategies, with 043

a few exceptions, largely focus on optimizing per- 044

formance metrics such as accuracy (Peng et al., 045

2024; Wu et al., 2023). While these methods are 046

effective for improving ICL performance, they of- 047

ten fail to account for fairness concerns. Parallel 048

research has explored bias and fairness in LLM 049

outputs (Gallegos et al., 2024) and their trustwor- 050

thiness (Huang et al., 2024), but a key gap remains: 051

how can we improve group fairness directly at the 052

demonstration selection stage in in-context learn- 053

ing? Unlike prior work that dynamically selects 054

demonstrations per test query (Wang et al., 2024), 055

we explore an alternative: constructing a single 056

demonstration set for an entire classification task. 057

In our work, we investigate several key ques- 058

tions. Do different LLMs exhibit consistent fair- 059

ness behavior across datasets? We find signifi- 060

cant variations in fairness outcomes across differ- 061

ent LLMs, highlighting the need for adaptive ap- 062

proaches rather than one-size-fits-all solutions. Do 063

existing demonstration selection methods gen- 064

eralize across LLM architectures and datasets? 065

Our results reveal that most prior methods fail to 066

maintain stable fairness improvements across dif- 067

ferent models due to inherent variability in LLM 068

responses. Can we design an effective, fairness- 069

aware demonstration selection approach? We 070

propose a simple yet highly effective method, 071

JUDGE (JUry-based Demonstration Selection via 072

Greedy Evaluation)1 that leverages each LLM’s 073

own predictions on a carefully curated set of jury 074

examples to guide demonstration selection. 075

This paper makes several contributions. First, 076

we provide a comprehensive analysis of existing 077

approaches for fairness-aware demonstration se- 078

lection across multiple datasets and architecures. 079

1Code: https://anonymous.4open.science/r/ACL25Code-6879
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Second, we present JUDGE, a consistent and ef-080

ficient framework for mining fair representative081

examples from large datasets for ICL. Third, we082

validate our approach through extensive empirical083

evaluation, showing significant fairness improve-084

ments without compromising accuracy across mul-085

tiple fairness benchmarks. Finally, our systematic086

analysis demonstrates that the greedy construction087

approach is crucial for balancing fairness and ac-088

curacy, outperforming alternatives such as top-k089

selection and pooling-based methods. As LLMs090

continue to be deployed in increasingly sensitive091

domains, our work provides a practical framework092

for ensuring fairer outcomes while maintaining the093

efficiency that makes ICL attractive.094

2 Preliminaries: Protected Groups,095

Attributes and Group Fairness096

Protected groups are demographic subpopulations097

that should not face disparate treatment in model098

decisions. Let G denote the set of protected groups,099

each defined by a protected attribute such as race,100

gender, or age. For any instance x in dataset D,101

its protected group membership is given by g(x).102

The population is partitioned into distinct protected103

groups G = {g1, g2, . . . , gl}, with each instance104

belonging to exactly one. For binary attributes105

(e.g., gender), this simplifies to G = {g1, g2}.106

Group fairness, or statistical fairness, aims to107

ensure that a model’s behavior remains consis-108

tent across protected groups by enforcing that cer-109

tain statistical measures are approximately equal110

across all protected groups, rather than focusing111

on individual-level fairness. We consider three112

established metrics: Demographic Parity Differ-113

ence (∆DP), which measures the absolute differ-114

ence in positive rates between protected groups115

(Padh et al., 2021); Equalized Odds Difference116

(∆EO), which measures the absolute difference117

in true positive and false positive rates between118

groups (Hardt et al., 2016); and Mutual Informa-119

tion (MI) (Kamishima et al., 2012; Anahideh et al.,120

2022), which quantifies the mutual information be-121

tween protected attributes and selection decisions122

(Details in Appendix A).123

3 Proposed Approach124

3.1 Problem Formulation: Fairest Prompt125

Search for In-Context Learning126

Given a large language model M and an input x,127

ICL makes predictions by conditioning on a demon-128

Figure 1: Example ICL Prompt on the COMPAS dataset

stration set S = {(x1, y1), ..., (xk, yk)}. The 129

model processes these demonstrations along with 130

the query input as: 131

prompt(S, x) = [(x1, y1), ..., (xk, yk), x] (1) 132

Let X denote the input space, Y the label space, 133

and L the natural language space. The formatting 134

function ϕ maps k input-label pairs and the query 135

to a natural language prompt as seen in Figure 1: 136

ϕ : (X × Y)k︸ ︷︷ ︸
k demonstration pairs

× X︸︷︷︸
query input

→ L (2) 137

ϕ(prompt(S, x)) ∈ L (3) 138

The model then predicts: 139

ŷ = argmaxy∈Y M(y|ϕ(prompt(S, x))) (4) 140

where M(y|ϕ(prompt(S, x))) represents the 141

model’s predicted probability distribution over the 142

label space Y , which we denote for brevity as: 143

ŷ = M(S, x) (5) 144

The fundamental challenge is selecting an ef- 145

fective and fair demonstration set S from a large 146

candidate pool. For a pool of size |D| and de- 147

sired demonstration set size k, there are
(|D|

k

)
pos- 148

sible combinations. For even modest values like 149

|D| = 1000 and k = 5, this yields over 8 tril- 150

lion possible demonstration sets, making exhaus- 151

tive search intractable. Fairness constraints further 152

complicate this selection. 153

Our approach, JUDGE addresses fair demon- 154

stration selection through a multi-step process as 155

shown in Figure 2. Let: 156

Train set Dtrain: The pool of available exam- 157

ples, where each example x ∈ Dtrain has asso- 158

ciated features, a label y ∈ [0, 1], and protected 159

group membership g(x). 160
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Jury set J : A small curated subset of examples161

extracted from Dtrain that serves to evaluate the162

fairness and effectiveness of candidate demonstra-163

tion sets.164

Candidate set Dcandidate: The complement of165

the jury set with respect to the train set, defined166

as Dcandidate = Dtrain \ J , from which potential167

demonstrations can be selected.168

Reduced candidate set Dreduced ⊆ Dcandidate:169

A pruned subset of the candidate set, selected to170

maintain semantic diversity while reducing compu-171

tational complexity. Demonstrations are selected172

from this subset.173

Protected groups G = {g1, g2, . . . , gl}: The set174

of groups defined by protected attributes, where175

each example belongs to exactly one group. We176

consider a binary setting where G = {g1, g2}.177

Selected set S ⊆ Dreduced: The chosen subset178

of k examples that will serve as demonstrations,179

where k is typically small (e.g., 5-10) due to context180

length constraints.181

Our objective is to find a demonstration set S∗182

that optimizes both predictive accuracy (a) and183

fairness (f ):184

S∗ = argmaxS⊆Dreduced,|S|=k score(S,J ) (6)185

score(S,J ) = ω · f(S,J ) + (1− ω) · a(S,J ) (7)186

The accuracy, a term measures the model’s pre-187

dictive performance on the jury set:188

a(S,J ) = 1

|J |
∑

(x,y)∈J

I[M(S, x) = y] (8)189

For the fairness, f(S,J ) term, we use the190

widely used demographic parity difference (de-191

tailed in Appendix A) to assess the demonstration192

set’s fairness using the jury set:193

f(S,J ) = −|P (M(S, x) = 1 | g(x) = g1)−194

P (M(S, x) = 1 | g(x) = g2)| (9)195

Note that we negate the demographic parity dif-196

ference since lower differences indicate better fair-197

ness, allowing both accuracy and fairness terms to198

be maximized in the same direction in Equation 6.199

To summarise, JUDGE consists of three main200

steps. First, we construct a balanced and diverse201

jury set J which evaluates candidate examples202

based on both fairness metrics and predictive per-203

formance. This jury set is drawn from the training204

set and subsequently removed to form the candidate 205

pool. Next, we prune the candidate pool to max- 206

imize semantic diversity and limit computational 207

overhead. Finally, we employ a greedy selection 208

algorithm that iteratively builds the demonstration 209

set S by adding, at each step, a demonstration from 210

Dreduced that maximizes the fairness-accuracy ob- 211

jective (Equation 7) over the jury set J . 212

3.2 Jury Set Composition 213

The jury set J is carefully constructed to ensure
balanced representation across all protected groups
and labels. We define all possible group-label
pairs as C = {(g, y) : g ∈ G, y ∈ Y}. For
example, in a binary setting where g represents
gender (Male, Female) and y represents income
level (>50k as 1, ≤ 50k as 0), we have C =
{(Female, 0), (Female, 1), (Male, 0), (Male, 1

Each subset Jg,y consists of m = |J |/|C| exam- 214

ples, selected to maximize semantic diversity. 215

For each example x, we compute an embedding 216

e(x) using SentenceBERT (Reimers, 2019). We 217

measure the semantic similarity between examples 218

using cosine similarity: 219

sim(xi, xj) =
e(xi) · e(xj)

∥e(xi)∥∥e(xj)∥
(10) 220

To construct a diverse subset Jg,y, we iteratively 221

select the next example xnext that minimizes its 222

maximum similarity to the previously selected ex- 223

amples. 224

xnext = arg min
xi /∈Jg,y

max
xj∈Jg,y

sim(xi, xj) (11) 225

Therefore, the subset Jg,y is calculated as: 226

Jg,y = {x1, ..., xm} where 227

xi = arg min
x∈Dg,y\{x1,...,xi−1}

max
j<i

sim(x, xj) (12) 228

where Dg,y represents the subset of examples in 229

Dtrain with protected group g and label y. The 230

final jury set is the union of these diverse subsets: 231

J =
⋃

(g,y)∈C

Jg,y (13) 232

3.3 Diversity-Based Candidate Pruning 233

To efficiently reduce the size of the candidate 234

pool while preserving coverage across the seman- 235

tic space, we employ a selection strategy based on 236

semantic similarity. 237

We construct the reduced set Dreduced itera- 238

tively by selecting examples that are maximally dis- 239

tinct from those already chosen, following Sec 3.2. 240

Given a target size n , the selection is defined as: 241
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Figure 2: JUDGE consists of three main steps: (1) constructing a balanced and diverse jury set J (2) pruning
the candidate pool to reduce computational overhead, and (3) iteratively selecting demonstrations using a greedy
algorithm that optimizes a weighted combination of fairness and accuracy scores over the jury set.

Dreduced = {x1, ..., xn} where242

xi = arg min
x∈Dcandidate\{x1,...,xi−1}

max
j<i

sim(x, xj)

(14)

243

This selection process ensures that the final sub-244

set Dreduced preserves the semantic diversity of the245

original pool while being computationally tractable246

for subsequent operations.247

3.4 Fairness-Guided Greedy Selection248

The algorithm constructs the demonstration set S249

iteratively using a greedy selection process, opti-250

mizing both fairness and accuracy over the jury set251

J . At each iteration t , the example that maximizes252

the marginal improvement in the overall score is253

added to S.254

The process starts with an empty set, S0 = ∅ .255

At t = 1 , each example in Dreduced is evaluated256

independently as the first demonstration, and the257

one yielding the highest fairness-accuracy score258

on the jury set is selected as x1, and S1 = S0 ∪259

{x1}. At t = 2 , we evaluate each of the remaining260

candidates in Dreduced \ S1 in combination with x1,261

forming two-example demonstration sets, selecting262

x2 that maximizes the score and S2 = S1 ∪ {x2}.263

This process continues until t = k.264

Formally, starting with an empty set S0 = ∅, at265

each iteration t until |St| = k, we select:266

xt = argmaxx∈Dreduced\St−1
score(St−1 ∪ {x},J ) (15)267

where St = St−1 ∪ {xt} and score is computed268

as defined in Section 3.1.269

While this greedy approach does not guarantee 270

finding the globally optimal demonstration set, it 271

offers several advantages. First, it reduces search 272

complexity from
(|Dreduced|

k

)
to O(k|Dreduced|), 273

drastically reducing the search space. Second, it en- 274

sures interpretability, as each demonstration is cho- 275

sen based on a clear improvement metric. Finally, 276

by evaluating candidates based on their marginal 277

contribution, it captures interaction effects, leading 278

to a more effective and fair selection. 279

Our approach is detailed in Algorithm 1. The 280

pseudocode for the helper function DiverseSelect, 281

which is based on the description from Section 3.2, 282

can be found in Algorithm 2 in the Appendix. 283

4 Complexity Analysis 284

The complexity is dominated by LLM inference. 285

In JUDGE, each demonstration in Dreduced is eval- 286

uated with every jury member to compute demo- 287

graphic parity and accuracy. Since this is repeated 288

k times to build a k-sized set, the overall complex- 289

ity is O(k · |Dreduced| · |J |). Unlike our method, 290

exhaustive search evaluates all possible subsets 291

of size k from N demonstrations, i.e., a complex- 292

ity of O(NK) which is infeasible for large N and 293

k. A detailed complexity comparison with other 294

baselines can be found in Appendix C. 295

5 Results 296

5.1 Datasets 297

We use four widely studied fairness datasets across 298

different domains and protected attributes (details 299

in Appendix B.2). Adult Income (Dua and Graff, 300
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Algorithm 1 JUDGE
Require: Training set Dtrain, protected groups G, labels Y ,

desired size k, jury size per group m, candidate pool size
n, trade-off ω

Ensure: Fair demonstration set S
1: // Step 1: Construct balanced jury set
2: C ← {(g, y) : g ∈ G, y ∈ Y}
3: J ← ∅
4: for (g, y) ∈ C do
5: Dg,y ← {x ∈ Dtrain : g(x) = g ∧ label(x) = y}
6: Jg,y ← DiverseSelect(Dg,y,m)
7: J ← J ∪ Jg,y

8: end for
9: // Step 2: Prune candidate pool

10: Dreduced ← DiverseSelect(Dtrain \ J , n)
11: // Step 3: Greedy selection
12: S0 ← ∅
13: for t← 1 to k do
14: xt ← None, smax ← −∞
15: for x ∈ Dreduced \ St−1 do
16: Stemp ← St−1 ∪ {x}
17: f ← f(Stemp,J ), a← a(Stemp,J )
18: s← ω · f + (1− ω) · a
19: if s > smax then
20: xt ← x, smax ← s
21: end if
22: end for
23: St ← St−1 ∪ {xt}
24: end for
25: return Sk

2019) to predict whether income exceeds $50K301

(protected attribute: gender). COMPAS (Angwin302

et al., 2016) to predict recidivism risk (protected303

attribute: race). Law School (LSAC) (Wightman,304

1998) to predict whether a student passes the bar305

(protected attribute: race). ACS Income (Ding306

et al., 2021) to predict whether income exceeds307

$50K (protected attribute: gender).308

5.2 Language Models309

To assess the generalizability of JUDGE, we eval-310

uate our approach using four open-source lan-311

guage models of varying parameters from differ-312

ent sources: Meta’s LLaMA-3 8B (Dubey et al.,313

2024), Mistral AI’s Mistral 7B (Jiang et al., 2023),314

Google’s Gemma-2 9B (Riviere et al., 2024), and315

Alibaba’s Qwen-2.5 32B (Hui et al., 2024).316

5.3 Baselines317

We compare our approach against seven baseline318

methods for demonstration selection. Random se-319

lects k demonstrations randomly from the training320

set. Balanced employs stratified random sampling321

to maintain equal representation across protected322

groups and label. Counterfactual (Li et al., 2023)323

selects from privileged groups and generates coun-324

terfactual examples by flipping sensitive attributes325

while preserving other features. Instruct (Atwood 326

et al., 2024) guides the model toward fairness via 327

explicit prompt instructions. FCG (Hu et al., 2024) 328

uses clustering and evolutionary strategies to curate 329

diverse, representative demonstrations while con- 330

sidering fairness metrics. FairICL (Bhaila et al., 331

2024) leverages latent concept variables to evaluate 332

demonstration fairness and guide selection, learn- 333

ing fair concepts from training data to promote 334

fairness while maintaining utility. FADS (Wang 335

et al., 2024) implements a two-stage filtering ap- 336

proach (data and model bias mitigation) followed 337

by similarity-based selection with balanced repre- 338

sentation across groups and labels. Unlike adaptive 339

methods like FADS, which select demonstrations 340

per test instance, JUDGE selects a single fixed 341

set for all test examples. We evaluate our method 342

against both fixed and adaptive approaches. 343

5.4 Experimental Setup 344

For each dataset-model combination, we conduct 345

experiments with two demonstration set sizes: k = 346

5 and k = 10, using 20% of the data for testing 347

where standard splits are not provided. We evaluate 348

performance using four metrics: accuracy (Acc.), 349

Demographic Parity Difference (∆DP), Equalized 350

Odds Difference (∆EO), and mutual information 351

(MI), as defined in Section 2. All results reported 352

in Tables 1-8 show the mean of 3 reproduction runs. 353

For space constraints, results for k = 10 (Tables 5- 354

8) are provided in Appendix B.3. The reduced can- 355

didate set Dreduced is pruned to 3% of Dcandidate 356

via semantic diversity maximization. Jury set sizes 357

are m = 25 for Adult and COMPAS, and m = 50 358

for Law School and ACS, with selection details 359

in Appendix B.11. A sensitivity analysis on ω is 360

provided in Appendix B.6. 361

5.4.1 Intrinsic Fairness Differences Among 362

LLMs and Datasets 363

We note an interesting pattern across our results: 364

different LLMs report significantly different fair- 365

ness metrics. This is evident when examining 366

the Random baseline. For instance, with k = 5 367

on Adult (Table 1), Gemma-2 produces a ∆DP 368

score of 0.394, compared to LLaMA-3’s 0.185, 369

more than twice the disparity in demographic par- 370

ity. These variations persist across datasets, with 371

Gemma-2 often exhibiting greater unfairness, e.g., 372

∆DP = 0.310 on COMPAS, compared to Mistral’s 373

0.097 (Table 2), over three times the value. 374

Perhaps less surprisingly, datasets themselves 375
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Table 1: Results for Adult with 5 demonstrations, across
4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.7720.008 0.1850.004 0.1910.006 0.0230.002
Balanced 0.7060.015 0.2160.011 0.1460.014 0.0220.001
Cfact. 0.7310.017 0.1850.019 0.1580.023 0.0180.003
Instruct 0.7530.013 0.2990.011 0.3080.012 0.0520.006
FairICL 0.7640.009 0.1700.004 0.0970.008 0.0160.002
FCG 0.7950.011 0.0970.009 0.1570.006 0.0110.001
FADS 0.7430.015 0.1570.012 0.1140.014 0.0190.003
JUDGE 0.7980.012 0.0780.011 0.0490.012 0.0040.001

M
IS

T
R

A
L

-7
B

Random 0.7090.013 0.2010.010 0.1240.009 0.0190.003
Balanced 0.5940.014 0.2300.011 0.1850.012 0.0250.004
Cfact. 0.7220.011 0.1430.008 0.1930.013 0.0110.003
Instruct 0.7290.021 0.1620.019 0.1710.023 0.0150.004
FairICL 0.7610.006 0.1510.011 0.1590.007 0.0120.002
FCG 0.7520.015 0.1320.014 0.0930.019 0.0060.001
FADS 0.7690.009 0.1800.008 0.1290.005 0.0210.002
JUDGE 0.7670.012 0.1010.009 0.0240.005 0.0060.001

G
E

M
M

A
-2

-9
B

Random 0.7540.006 0.3940.008 0.4230.013 0.0910.005
Balanced 0.7010.014 0.4820.023 0.4130.026 0.1130.021
Cfact. 0.7520.015 0.3110.015 0.3720.011 0.0870.016
Instruct 0.7420.011 0.4280.009 0.4790.013 0.1080.008
FairICL 0.7530.014 0.3180.019 0.3920.026 0.0890.013
FCG 0.7550.017 0.2330.025 0.1920.018 0.0130.003
FADS 0.7590.013 0.3530.011 0.3870.016 0.0720.006
JUDGE 0.7690.012 0.1770.018 0.1010.009 0.0180.003

Q
W

E
N

-2
.5

-3
2B

Random 0.7450.012 0.2150.010 0.1320.010 0.0230.004
Balanced 0.7080.014 0.2450.013 0.1650.012 0.0270.003
Cfact. 0.7480.014 0.2250.014 0.1430.011 0.0250.003
Instruct 0.7330.007 0.2390.013 0.1610.009 0.0260.005
FairICL 0.7430.009 0.1920.012 0.1470.015 0.0270.009
FCG 0.7620.013 0.1110.014 0.0980.013 0.0070.002
FADS 0.7120.009 0.2200.007 0.1410.006 0.023.003
JUDGE 0.7710.008 0.0960.005 0.0620.004 0.0050.001

vary in fairness, with the same model reporting very376

different fairness metrics across different datasets.377

More interestingly, certain baselines behave dra-378

matically differently across models. For example,379

Instruct achieves strong fairness on Law School380

with Mistral for both k = 5 and 10 , yet completely381

sacrifices fairness on Qwen-2.5B and Gemma-2,382

despite maintaining high accuracy (Table 4, 8).383

One trend remains consistent: methods behave simi-384

larly across demonstration sizes, with performance385

staying stable across k = 5 and k = 10 for a given386

model, dataset, and method.387

5.5 Performance Comparison388

JUDGE consistently outperforms baselines across389

32 settings (4 LLMs * 4 Datasets * 2 Demonstra-390

tion set sizes), achieving the best performance in391

most cases and near-best results in the instances392

where it is not the top performer. We attribute this393

to its greedy approach, which iteratively selects394

demonstrations by maximizing their marginal con-395

tribution based on LLM feedback using a semanti-396

cally diverse jury set. Given the high variability in397

data types and LLM architectures, we believe this398

step-by-step feedback is key to generalizability.399

Notably, baselines that incorporate LLM feed-400

Table 2: Results for COMPAS with 5 demonstrations,
across 4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.6170.011 0.2090.009 0.1990.008 0.0210.003
Balanced 0.6200.012 0.2350.011 0.2180.013 0.0270.002
Cfact. 0.5820.009 0.1870.006 0.1930.007 0.0170.001
Instruct 0.5660.010 0.1350.009 0.1640.010 0.0150.001
FairICL 0.6210.009 0.1920.007 0.1880.006 0.0200.002
FCG 0.6140.007 0.1820.005 0.1970.005 0.0190.001
FADS 0.5750.008 0.1670.006 0.1600.005 0.0140.002
JUDGE 0.6560.010 0.1050.008 0.0820.007 0.0060.001

M
IS

T
R

A
L

-7
B

Random 0.5130.012 0.0970.008 0.1200.009 0.0160.002
Balanced 0.5120.007 0.0790.005 0.0830.004 0.0130.003
Cfact. 0.4870.010 0.0590.009 0.0620.009 0.0150.004
Instruct 0.4970.012 0.0820.010 0.1050.008 0.0140.002
FairICL 0.5150.006 0.0820.005 0.0980.005 0.0170.004
FCG 0.4890.009 0.0740.004 0.1080.006 0.0130.003
FADS 0.5310.010 0.0910.005 0.1170.007 0.0150.009
JUDGE 0.5410.007 0.0550.004 0.0750.004 0.0020.000

G
E

M
M

A
-2

-9
B

Random 0.6150.008 0.3100.005 0.3140.006 0.0490.003
Balanced 0.6010.009 0.3590.006 0.3480.005 0.0670.004
Cfact. 0.6040.007 0.2610.004 0.2720.005 0.0440.005
Instruct 0.6090.011 0.2910.009 0.3090.012 0.0470.006
FairICL 0.6220.010 0.2650.011 0.2820.012 0.0400.005
FCG 0.6480.007 0.0990.003 0.0910.005 0.0080.003
FADS 0.6210.014 0.3070.011 0.3030.09 0.0530.009
JUDGE 0.6650.006 0.0620.002 0.0390.003 0.0020.000

Q
W

E
N

-2
.5

-3
2B

Random 0.6370.007 0.2420.005 0.2210.006 0.0290.003
Balanced 0.6520.008 0.2480.007 0.2400.011 0.0310.005
Cfact. 0.6110.008 0.2440.006 0.2280.006 0.0310.004
Instruct 0.6330.006 0.2340.003 0.2140.004 0.0260.002
FairICL 0.6390.008 0.2110.005 0.2180.005 0.0250.003
FCG 0.6230.006 0.1490.004 0.1440.003 0.0180.003
FADS 0.6450.008 0.2240.006 0.2070.004 0.0250.003
JUDGE 0.6490.004 0.1380.005 0.1340.003 0.0100.001

back, like FCG, tend to perform better than those 401

relying solely on heuristics, which often lack con- 402

sistency—excelling in some cases but failing in oth- 403

ers. For instance, Counterfactual selection signifi- 404

cantly improves fairness over Random on Gemma- 405

2 for Adult, but worsens on Qwen-2.5 for the same 406

dataset (Table 1). Similarly, Instruct improves fair- 407

ness over Random on LLaMA-3 for COMPAS (Ta- 408

ble 2) but significantly harms it on Adult using the 409

same LLM. FADS, designed to mitigate both model 410

and data bias, performs well in many cases but 411

struggles on certain datasets. FairICL, which trains 412

a local LLaMA model to rank demonstrations, suf- 413

fers from limited generalizability due to architec- 414

tural differences between models. Overall, JUDGE 415

remains the most consistent across all settings, im- 416

proving fairness across metrics while maintaining 417

accuracy. Its LLM-driven, stepwise construction 418

ensures robust, data- and model-agnostic perfor- 419

mance, making it a stronger, more reliable ap- 420

proach than existing baselines. 421

5.6 Ablation: Greedy vs. Top-k Selection 422

To validate our greedy selection approach, we com- 423

pare it against two alternatives: (1) Top-k, the top 424

k candidates that individually perform the best on 425
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Table 3: Results for ACS with 5 demonstrations, across
4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.6930.009 0.1220.008 0.1060.009 0.0080.001
Balanced 0.6890.016 0.0890.009 0.0700.008 0.0040.000
Cfact. 0.6530.005 0.0920.004 0.0920.004 0.0040.000
Instruct 0.6840.010 0.1150.006 0.1010.006 0.0080.001
FairICL 0.6880.011 0.0980.008 0.0100.004 0.0080.002
FCG 0.7590.010 0.0660.005 0.0710.004 0.0020.006
FADS 0.6970.008 0.1160.006 0.1010.004 0.0080.001
JUDGE 0.7640.007 0.0450.002 0.0490.003 0.0010.000

M
IS

T
R

A
L

-7
B

Random 0.6030.007 0.0910.005 0.0520.006 0.0050.001
Balanced 0.5580.013 0.0700.009 0.0320.009 0.0030.000
Cfact. 0.6070.009 0.0850.005 0.0630.004 0.0060.001
Instruct 0.5920.017 0.0940.12 0.1080.011 0.0070.001
FairICL 0.6100.005 0.0890.004 0.0510.003 0.0050.001
FCG 0.6480.008 0.0510.007 0.0690.004 0.0070.001
FADS 0.5990.012 0.0880.006 0.0510.004 0.0050.000
JUDGE 0.6510.011 0.0310.005 0.0360.006 0.0010.000

G
E

M
M

A
-2

-9
B

Random 0.6960.009 0.2250.007 0.2230.010 0.0280.004
Balanced 0.7070.012 0.2330.009 0.1790.009 0.0280.002
Cfact. 0.6900.010 0.2270.008 0.2270.009 0.0270.003
Instruct 0.6960.016 0.2630.010 0.2780.010 0.0390.005
FairICL 0.6910.014 0.2110.007 0.2180.012 0.0270.004
FCG 0.7050.012 0.1410.007 0.1360.009 0.0180.002
FADS 0.7090.016 0.2050.006 0.2740.010 0.0310.003
JUDGE 0.7040.010 0.1310.006 0.1240.006 0.0130.001

Q
W

E
N

-2
.5

-3
2B

Random 0.7270.014 0.1010.008 0.0590.010 0.0050.001
Balanced 0.7280.012 0.0760.008 0.0170.008 0.0030.000
Cfact. 0.7310.005 0.0870.003 0.0320.003 0.0040.001
Instruct 0.7350.014 0.1910.009 0.1250.010 0.0180.002
FairICL 0.7240.011 0.0910.006 0.0760.007 0.0050.001
FCG 0.7270.006 0.0590.003 0.0510.003 0.0020.000
FADS 0.7290.003 0.0970.002 0.0460.004 0.0050.001
JUDGE 0.7390.010 0.0250.005 0.0360.005 0.0010.000

the jury set, (2) Top-k-Balanced, which is a strati-426

fied selection that picks the top samples from each427

combination of protected group and label, (g, y).428

Results show that greedy selection consistently out-429

performs both methods, highlighting the impor-430

tance of marginal contribution of each example431

in building a fair and effective demonstration set.432

The effect of Top-k and Top-k-Balanced varies by433

dataset. As shown in Figure 3, on Adult (LLaMA-434

3-8B), Top-k exhibits a dramatic drop in fairness435

performance, while Top-k-Balanced fares better.436

On COMPAS, we see competitive fairness perfor-437

mance across variants, but upon closer inspection438

we observe that Top-k and Top-k-Balanced selec-439

tion suffers large drops in accuracy. These findings440

underscore the inherent variability in ICL and re-441

inforce the strength of the greedy approach, which442

incrementally selects candidates while considering443

their interactions with the existing set.444

5.7 Impact of Jury Set Size445

To assess the impact of jury size, we vary the446

number of examples per group-label combination447

m from 1 to 100, keeping all other parameters448

constant with k = 5 demonstrations. Figure 4449

(LLaMA-3 on Adult) shows results for accuracy450

Table 4: Results for Law School with 5 demonstrations,
across 4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.8950.012 0.2990.009 0.4930.015 0.0540.004
Balanced 0.6630.016 0.4060.008 0.3770.006 0.0470.005
Cfact. 0.8710.015 0.2720.010 0.4350.018 0.0440.003
Instruct 0.8620.019 0.1970.011 0.3070.019 0.0320.003
FairICL 0.7640.015 0.3120.008 0.3460.006 0.0450.002
FCG 0.9090.016 0.0820.016 0.1780.020 0.0190.003
FADS 0.8980.004 0.2420.003 0.3530.006 0.0390.001
JUDGE 0.9110.026 0.0570.027 0.1040.035 0.0050.001

M
IS

T
R

A
L

-7
B

Random 0.9050.009 0.1870.011 0.3380.007 0.0290.003
Balanced 0.8710.012 0.2190.004 0.3620.007 0.0310.001
Cfact. 0.9040.012 0.2000.011 0.4180.008 0.0290.003
Instruct 0.9130.010 0.0230.004 0.0770.005 0.0040.000
FairICL 0.9020.010 0.1730.006 0.3110.009 0.0260.003
FCG 0.9430.014 0.0380.006 0.0910.04 0.0180.002
FADS 0.9340.006 0.1030.004 0.2270.003 0.0190.002
JUDGE 0.9460.013 0.0270.003 0.0590.004 0.0080.001

G
E

M
M

A
-2

-9
B

Random 0.8530.011 0.3720.007 0.5690.010 0.0580.004
Balanced 0.7560.007 0.4190.011 0.4360.008 0.0560.003
Cfact. 0.7470.007 0.3660.004 0.3580.006 0.0420.003
Instruct 0.8780.004 0.3440.005 0.5530.003 0.0560.001
FairICL 0.8440.010 0.3410.009 0.3570.012 0.0410.002
FCG 0.8450.013 0.2580.009 0.2670.011 0.0290.003
FADS 0.8770.009 0.2870.006 0.5020.007 0.0470.003
JUDGE 0.8550.013 0.2270.009 0.2140.008 0.0250.003

Q
W

E
N

-2
.5

-3
2B

Random 0.8650.007 0.3270.005 0.4140.004 0.0520.002
Balanced 0.8310.011 0.3920.005 0.4930.006 0.0610.002
Cfact. 0.8400.009 0.3660.006 0.4180.008 0.0550.005
Instruct 0.8830.008 0.3700.005 0.5340.006 0.0720.004
FairICL 0.8600.018 0.3160.010 0.4490.014 0.0570.002
FCG 0.8620.016 0.2480.013 0.2930.012 0.0350.003
FADS 0.8890.021 0.2380.012 0.4190.016 0.0440.009
JUDGE 0.8820.016 0.2140.013 0.2730.015 0.0270.001

and ∆DP (full results in Appendix B.4, Figure 10). 451

Results on Adult indicate that performance stabi- 452

lizes as m increases, with diminishing returns be- 453

yond m > 25 despite higher computational costs. 454

Accuracy plateaus quickly, with m = 5 or 10 being 455

sufficient, while fairness improves up to m = 50 . 456

5.8 Jury Set Diversity 457

To examine the impact of semantic diversity in 458

jury set construction, we compare three methods: 459

(1) Random Sampling, (2) Random-Balanced (ran- 460

dom sampling after enforcing equal representation 461

across protected group-label combinations), and 462

(3) Semantic Diversity-based selection. We fix 463

m = 25 for this comparison. With jury sets con- 464

strained to be small for computational efficiency, 465

Figure 5 shows that diversity-based selection out- 466

performs both alternatives on the ACS dataset. A 467

similar experiment on Adult is provided in Ap- 468

pendix B.5. 469

6 Related Work 470

Demonstration Selection in ICL The problem 471

of selecting demonstrations for ICL has received 472

significant attention. (Liu et al., 2022) showed 473

7



(a) Adult dataset

(b) COMPAS dataset

Figure 3: Comparison of Greedy vs. Top-k alternatives

Figure 4: Accuracy and ∆DP against the size of the jury
set for Adult. Higher sizes show diminishing returns.

that finding demonstrations which are semantically474

similar to the test data often shows promising re-475

sults. Wu et al. (2023) addressed this challenge by476

establishing a select-then-rank framework where477

they first limit the search space of demonstrations478

and rank the remaining examples through heuris-479

tics. Peng et al. (2024) highlighted that both data480

and model factors contribute to variability in per-481

formance. Meanwhile, Ma et al. (2023) showed482

that predictive performance can be improved by483

selecting examples that minimize predictive bias.484

To address efficiency concerns, Yang et al. (2023)485

proposed a two-stage Determinantal Point Process486

(DPP) method to select a fixed, representative sub-487

set of demonstrations, improving efficiency while488

maintaining performance.489

Fair Demonstration Selection in ICL The fair-490

ness of language models has received significant491

attention (Doan et al., 2024; Chu et al., 2024). Liu492

et al. (2024) showed that LLMs exhibit significant493

bias in tabular classification. In ICL, fair demon-494

Figure 5: Comparison of diversity vs. other sampling
techniques for the jury set on the ACS dataset.

stration selection is crucial. Hu et al. (2024) inves- 495

tigated how varying the composition of demonstra- 496

tions affects fairness outcomes in ICL. The authors 497

proposed a fairness-aware selection method that 498

employs clustering and evolutionary strategies to 499

curate a diverse and representative sample set from 500

the training data. Meanwhile, Wang et al. (2024) 501

introduced FADS, which addresses the challenge 502

of fair demonstration selection by mitigating both 503

model bias and bias in the data. Other approaches 504

have explored leveraging counterfactual analysis. 505

Bhaila et al. (2024) introduced a method that uses 506

latent concept variables learned through counterfac- 507

tual examples to evaluate the fairness of demonstra- 508

tions. The idea of utilizing counterfactual examples 509

is also presented by Li et al. (2023), which picks 510

examples from the privileged group and flips the 511

sensitive attribute to create new examples. Finally, 512

Atwood et al. (2024) showed how prompting the 513

model by explicitly asking it to be fair can also 514

be effective. However, existing approaches have 515

limitations, as shown in our experiments, while our 516

proposed method, JUDGE, ensures more consistent 517

and reliable fairness improvements. 518

7 Conclusion 519

We propose JUDGE, a greedy framework for fair 520

demonstration selection in ICL, guided by a jury 521

set. Across four datasets and four LLM architec- 522

tures, our method consistently improves fairness 523

while maintaining accuracy, outperforming existing 524

approaches. We further highlight the high variabil- 525

ity of different methods across different datasets 526

and language models, and establish the importance 527

of considering demonstrations as a cohesive set 528

rather than as individual examples to ensure fair- 529

ness. As LLMs expand into critical applications, 530

JUDGE offers a practical and robust solution for 531

ensuring fairness in ICL. 532

8



Limitations533

This work investigates the problem of fairness534

aware demonstration selection for in-context learn-535

ing. In order to do so, this work explores vari-536

ous open-source LLM architectures from Google,537

Meta, Mistral, and Alibaba. While these architec-538

tures have varied sizes ranging from 7B to 32B539

parameters, a key limitation in our work is that,540

due to hardware limitations we do not investigate541

the effect on truly massive models like LLAMA-542

3-405B. Furthermore, financial constraints prevent543

us from using closed-source paid platforms like544

GPT-4o, given the large number of LLM queries545

required across our datasets, baselines, LLMs and546

demonstration sizes. Nonetheless, we believe we547

chose a diverse and representative set of highly548

performant open-source LLMs to make our study549

comprehensive. Furthermore, our study limits it-550

self to exploring binary in-context classification551

as well as binary sensitive group settings. In the552

future, we plan to consider broader classification553

settings. Finally, in line with prior work, we aimed554

to conduct a comprehensive study across widely555

popular fairness datasets, which are typically tabu-556

lar in nature and are thus serialized into a natural557

language prompt for the LLM. In the future, we558

hope to study other types of data in the context of559

fairness in large language models.560
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A Fairness Metrics Formulation 705

Here we provide detailed mathematical formula- 706

tions of the fairness metrics used in our analysis. 707

For all metrics, we take absolute values to ensure 708

positive measures of disparity, where zero indicates 709

perfect fairness and larger values indicate greater 710

disparity. 711

A.1 Demographic Parity Difference (∆DP) 712

The Demographic Parity Difference (∆DP) mea- 713

sures the absolute difference in positive label rates 714

between groups: 715

∆DP = |P (y = 1 | g(x) = g1)− 716

P (y = 1 | g(x) = g2)| (16) 717

where y = 1 denotes a positive label. A ∆DP of 718

0 indicates perfect demographic parity. 719

A.2 Equalized Odds Difference (∆EO) 720

The Equalized Odds Difference (∆EO) measures 721

disparities in both true positive rates (TPR) and 722

false positive rates (FPR) between groups: 723

∆EO = max (|TPRg1 − TPRg2 | , |FPRg1 − FPRg2 |)
(17) 724

where 725

TPRg = P (y = 1 | g(x) = g, y∗ = 1) (18) 726

FPRg = P (y = 1 | g(x) = g, y∗ = 0) (19) 727

Here, y∗ represents the true label, and y = 1 728

represents the predicted positive label. A ∆EO of 729

0 indicates perfect equalized odds. 730

A.3 Mutual Information Fairness 731

The mutual information between protected group 732

membership G and the positive label assignment 733

is: 734
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I(G;Y ) =
∑
g,y

P (g, y) log
P (g, y)

P (g)P (y)
(20)735

where y denotes whether an instance receives a736

positive label. Lower mutual information indicates737

greater independence between the positive label738

assignment and protected group membership. This739

metric is naturally non-negative, with 0 indicating740

perfect independence.741

B Additional Experiment Details742

B.1 DiverseSelect743

The pseudocode for maximizing semantic diversity744

in selection is shown in Algorithm 2.745

Algorithm 2 DiverseSelect: Diversity-Based Ex-
ample Selection

Require: Initial pool D, target size k
Ensure: Diverse subset Ddiverse

1: Compute Sij = sim(xi, xj) for all xi, xj ∈ D
2: Ddiverse ← xr where xr is randomly sampled

from D
3: for t← 1 to k − 1 do
4: for xi ∈ D \ Ddiverse do
5: si ← maxxj∈Ddiverse

Sij
6: end for
7: xt ← argminxi∈D\Ddiverse

si
8: Ddiverse ← Ddiverse ∪ xt
9: end for

10: return Ddiverse

B.2 Dataset Details746

Adult Income The UCI Adult dataset (Dua and747

Graff, 2019) contains demographic and employ-748

ment information for 48,842 individuals. The749

task is to predict whether annual income exceeds750

$50,000, with gender as the protected attribute. The751

prompt template for this dataset is shown in Figure752

8.753

COMPAS This dataset (Angwin et al., 2016)754

includes criminal history and demographic data755

for 7,214 defendants. The classification task is756

predicting recidivism risk. We use a binarized race757

(Caucasian vs African-American) as the protected758

attribute. The prompt template for this dataset is759

shown in Figure 6.760

Law School The LSAC dataset (Wightman,761

1998) contains admissions data and academic per-762

formance for over 22,000 law school students. The763

model predicts whether a student passes the bar,764

Figure 6: COMPAS Prompt Template

Figure 7: Law School Prompt Template

with a binarized race (Caucasian vs Not-Caucasian) 765

as the protected attribute. The prompt template for 766

this dataset is shown in Figure 7. 767

ACS Income The ACS PUMS dataset (Ding 768

et al., 2021) contains demographic and employ- 769

ment information from the American Commu- 770

nity Survey. The task predicts if income exceeds 771

$50,000, using gender as the protected attribute. 772

The ACS Income dataset in its original form con- 773

tains over 1.66 million datapoints, which is far 774

larger than all other datasets that we consider, com- 775

bined. For LLM in-context classification, this be- 776

comes prohibitively expensive from a computation 777

perspective. As a result, we randomly downsample 778

ACS Income down to 48,842 samples, which is the 779

same size as the closely related Adult Dataset. Both 780

datasets track American income data, but ACS pro- 781

vides much newer information from 2018 instead 782

of 1994 for Adult. The prompt template for this 783

dataset is shown in Figure 9. 784
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Figure 8: Adult Prompt Template

Figure 9: ACS Prompt Template

B.3 Additional Results785

This section presents results for all LLMs and all786

datasets with 10 demonstrations provided for In-787

Context Learning. These can be seen in Tables 5-8788

for each of the four datasets.789

B.4 Full Results for the Effect of Jury Set Size790

Here we provide the results for all metrics for our791

experiment in Section 5.7, which tests the effect of792

different jury set sizes on the Adult dataset using793

LLAMA-3-8B. This is shown in Figure 10. This794

figure additionally shows the ∆EO and MI metrics795

which show the same pattern as the ∆DP metric.796

B.5 Additional Jury Set Diversity Experiment797

We conduct the same jury set diversity experiment798

from Section 5.8 on the Adult dataset, comparing799

random selection, balanced-random selection, and800

our diversity-based approach. As with ACS, the801

jury set size is fixed at m = 25 across all methods.802

Table 5: Results for Adult with 10 demonstrations. Each
cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.7790.004 0.1330.003 0.1180.004 0.0170.001
Balanced 0.7510.013 0.2210.019 0.1370.022 0.0250.002
Cfact. 0.7760.018 0.1440.014 0.1420.015 0.0150.003
Instruct 0.7810.022 0.2520.017 0.2890.019 0.0460.004
FairICL 0.7770.015 0.1460.012 0.1640.135 0.0140.003
FCG 0.7880.017 0.1890.014 0.1630.017 0.0230.003
FADS 0.7720.013 0.1610.011 0.0980.005 0.0200.003
JUDGE 0.7940.011 0.0820.009 0.0920.008 0.0080.001

M
IS

T
R

A
L

-7
B

Random 0.7550.014 0.2090.012 0.2620.009 0.0230.004
Balanced 0.5850.009 0.2200.011 0.1700.008 0.0230.003
Cfact. 0.7310.014 0.1410.016 0.0900.016 0.0100.003
Instruct 0.7420.014 0.1820.013 0.2120.018 0.0120.005
FairICL 0.7630.011 0.1430.008 0.1550.006 0.0130.002
FCG 0.7580.022 0.1220.013 0.0830.016 0.0120.003
FADS 0.7750.012 0.1920.009 0.2440.013 0.0220.003
JUDGE 0.7710.010 0.0100.012 0.0580.010 0.0100.001

G
E

M
M

A
-2

-9
B

Random 0.7740.009 0.3650.005 0.4840.012 0.0900.006
Balanced 0.7210.015 0.3890.022 0.4550.029 0.1160.015
Cfact. 0.7620.020 0.2760.017 0.3830.019 0.0720.013
Instruct 0.7640.013 0.4080.013 0.5230.011 0.1070.009
FairICL 0.7630.013 0.3010.021 0.3230.024 0.0720.011
FCG 0.7780.011 0.1760.013 0.1790.014 0.0530.003
FADS 0.7660.010 0.3780.009 0.4140.016 0.0870.007
JUDGE 0.7920.010 0.1730.015 0.1970.019 0.0470.005

Q
W

E
N

-2
.5

-3
2B

Random 0.7410.016 0.2100.015 0.1290.004 0.0210.003
Balanced 0.7280.017 0.2230.019 0.1520.013 0.0260.004
Cfact. 0.7430.011 0.2190.010 0.1350.009 0.0250.002
Instruct 0.7150.009 0.2360.010 0.1570.011 0.0250.002
FairICL 0.7560.012 0.2040.010 0.1510.010 0.0250.003
FCG 0.7780.011 0.1280.010 0.0990.007 0.0110.003
FADS 0.7060.010 0.2060.007 0.1320.005 0.0220.004
JUDGE 0.7750.009 0.101.008 0.078.004 0.007.001

Figure 11 illustrates that diversity-based selec- 803

tion also outperforms other sampling strategies on 804

the Adult dataset, reinforcing the importance of 805

semantic diversity in jury construction. 806

B.6 Sensitivity Analysis 807

To understand the impact of trade-off parameters in 808

different methods, we conduct a sensitivity analysis 809

by varying the fairness-accuracy balancing coeffi- 810

cients in JUDGE, FCG, and FairICL on the Adult 811

dataset over LLAMA-3-8B. We select FCG and 812

FairICL as baselines because their respective au- 813

thors explicitly identify α and D̃ as key parameters 814

that influence fairness, making them well-suited 815

for comparison with JUDGE. 816

B.7 JUDGE: Sensitivity to ω 817

JUDGE introduces ω as a parameter that controls 818

the trade-off between accuracy and fairness. The se- 819

lection of demonstrations is influenced by ω, where 820

lower values prioritize fairness while higher val- 821
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Figure 10: Comparing metrics against the size of the jury set for Adult. Higher sizes show diminishing returns.

Figure 11: Comparison of diversity vs. other sampling
techniques for the jury set on the Adult dataset.

ues emphasize accuracy. We evaluate JUDGE at822

ω ∈ {0.4, 0.5, 0.6, 0.7, 0.8}. We choose this set823

because we find in our experiments that ω values824

that prioritize fairness slightly more than accuracy825

work well, improving fairness while also retaining826

predictive performance.827

B.8 FCG: Sensitivity to α828

FCG uses α in the EvolScore function to bal-829

ance accuracy and fairness. The original pa-830

per sets α = 0.5, and we analyze values in831

{0.3, 0.4, 0.5, 0.6, 0.7} to assess how the fairness-832

accuracy trade-off shifts.833

B.9 FairICL: Sensitivity to D̃834

FairICL introduces D̃, which represents the frac-835

tion of augmented data used for fairness-aware836

training. The original study evaluates Fair-837

ICL at D̃ ∈ {0%, 25%, 50%, 100%}, highlight-838

ing its influence on fairness. To provide a839

more fine-grained analysis, we add an additional840

evaluation at D̃ = 75%, resulting in the set841

{0%, 25%, 50%, 75%, 100%}.842

B.10 Results: Accuracy vs. Fairness843

Trade-Off844

Figure 12 presents a scatter plot where each845

method’s trade-off variations are shown along two846

axes: Accuracy (Y-axis) and ∆ DP (X-axis). Each 847

point represents a model trained with a different 848

trade-off parameter. Points closer to the top-left are 849

preferred (high accuracy, low ∆DP) 850

Figure 12: Scatter plot of Accuracy vs. Demographic
Parity (∆DP) for different trade-off parameter settings
in JUDGE, FCG, and FairICL.

We observe clear trade-offs for JUDGE and 851

FCG, where higher accuracy comes at the cost of 852

fairness and vice versa, guided by the weighting 853

provided by ω and α. On FairICL, we find the 854

relationship to be less strong, with most points 855

clustered around a similar area. 856

B.11 Data Splits and Hyperparameters 857

For all datasets except Adult, we employ a consis- 858

tent data splitting strategy: 859

• 20% for test set (Dtest) 860

• 70% for training set (Dtrain) 861

• 10% for validation set (Dvalidation) 862

For the Adult dataset, which provides a prede- 863

fined train-test split, we maintain the original test 864

set and split the training set into Dtrain (90%) and 865

Dvalidation (10%). 866

It is important to note that this validation set is 867

distinct from the jury set (J ) used in our method. 868
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Table 6: Results for COMPAS with 10 demonstrations.
Each cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.6030.013 0.2240.010 0.2210.009 0.0250.002
Balanced 0.6050.007 0.2570.006 0.2810.006 0.0340.002
Cfact. 0.5770.007 0.2020.005 0.1940.005 0.0190.001
Instruct 0.5560.009 0.1300.007 0.1560.007 0.0160.001
FairICL 0.6090.008 0.2090.007 0.2130.008 0.0250.002
FCG 0.6210.006 0.2270.004 0.2370.004 0.0240.002
FADS 0.5840.006 0.1330.008 0.1280.004 0.0090.001
JUDGE 0.6180.011 0.1020.009 0.1140.009 0.0060.001

M
IS

T
R

A
L

-7
B

Random 0.5270.011 0.1300.005 0.1570.006 0.0190.001
Balanced 0.5170.006 0.0890.005 0.1150.005 0.0170.002
Cfact. 0.4950.009 0.1270.007 0.1490.007 0.0200.004
Instruct 0.5030.011 0.1250.008 0.1410.009 0.0170.002
FairICL 0.5140.006 0.1100.003 0.1270.004 0.0180.006
FCG 0.5470.011 0.1530.007 0.1290.008 0.0150.003
FADS 0.5360.014 0.1290.008 0.1370.017 0.0180.003
JUDGE 0.5380.008 0.0560.004 0.0550.004 0.0070.001

G
E

M
M

A
-2

-9
B

Random 0.6100.006 0.3110.005 0.2980.006 0.0480.002
Balanced 0.6240.007 0.3240.005 0.3030.005 0.0540.005
Cfact. 0.5970.009 0.2550.008 0.2480.008 0.0390.003
Instruct 0.6080.012 0.2920.013 0.3010.011 0.0460.005
FairICL 0.6310.009 0.2720.009 0.2810.007 0.0440.005
FCG 0.6450.006 0.1190.004 0.1280.006 0.0090.002
FADS 0.6280.009 0.2890.007 0.2770.014 0.0410.003
JUDGE 0.6480.006 0.0590.003 0.0350.000 0.0020.000

Q
W

E
N

-2
.5

-3
2B

Random 0.6410.006 0.2310.004 0.2100.004 0.0240.002
Balanced 0.6580.009 0.2290.011 0.2380.010 0.0290.005
Cfact. 0.6530.009 0.1970.005 0.1870.007 0.0200.003
Instruct 0.6440.010 0.2130.007 0.1880.007 0.0230.005
FairICL 0.6420.009 0.2020.006 0.2110.007 0.0230.002
FCG 0.6310.008 0.1670.004 0.1910.005 0.0210.003
FADS 0.6590.012 0.1990.011 0.1700.014 0.0200.003
JUDGE 0.6520.006 0.1110.004 0.1290.003 0.0110.002

While the jury set is constructed from the train-869

ing data to guide demonstration selection and is870

typically very small, the validation set is used ex-871

clusively for hyperparameter tuning.872

To tune hyperparameters, we conduct a system-873

atic grid search over two key hyperparameters:874

1. The fairness-accuracy trade-off parameter ω875

in the range [0.3, 0.9] with steps of 0.1876

2. The number of examples per group-label com-877

bination m in the jury set, testing values878

{15, 20, 25, 50}879

In Section 5.7, we demonstrated that jury sizes880

beyond m = 50 yield diminishing returns, while881

very small values (m ∈ {1, 2, 3, 5, 10}) show sub-882

stantial performance gaps in fairness and accuracy.883

Based on these observations, we focus our parame-884

ter search on the more practical intermediate range.885

For jury set size selection, we do as follows: Start-886

ing from smaller values, we incrementally evaluate887

Table 7: Results for ACS with 10 demonstrations. Each
cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.6990.011 0.1080.007 0.0910.008 0.0060.001
Balanced 0.6950.010 0.0950.007 0.0880.006 0.0040.000
Cfact. 0.6820.011 0.0900.004 0.0910.003 0.0040.001
Instruct 0.6930.013 0.1030.008 0.0990.009 0.0080.001
FairICL 0.6920.009 0.0890.004 0.0980.005 0.0050.002
FCG 0.7550.007 0.0590.003 0.0560.008 0.0020.006
FADS 0.7230.010 0.1210.006 0.1140.008 0.0070.001
JUDGE 0.7660.009 0.0240.004 0.0590.006 0.0010.000

M
IS

T
R

A
L

-7
B

Random 0.6480.08 0.0850.004 0.0420.008 0.0040.001
Balanced 0.5710.011 0.0610.010 0.0340.004 0.0030.000
Cfact. 0.6120.07 0.0770.003 0.0580.004 0.0040.001
Instruct 0.6070.011 0.0920.009 0.0990.007 0.0060.001
FairICL 0.6220.008 0.0810.005 0.0570.004 0.0050.001
FCG 0.6500.006 0.0480.004 0.0670.003 0.0020.000
FADS 0.6360.014 0.0800.006 0.0260.004 0.0040.000
JUDGE 0.6550.009 0.0290.004 0.0370.002 0.0010.000

G
E

M
M

A
-2

-9
B

Random 0.7120.012 0.2180.008 0.2620.009 0.0290.003
Balanced 0.7130.012 0.2010.008 0.2230.006 0.0270.002
Cfact. 0.7190.008 0.2060.007 0.2380.008 0.0250.002
Instruct 0.7070.015 0.2310.009 0.2810.011 0.0380.004
FairICL 0.7180.021 0.2080.008 0.2240.007 0.0230.004
FCG 0.7150.009 0.1250.006 0.1290.008 0.0160.002
FADS 0.7250.009 0.2170.011 0.2640.009 0.0320.004
JUDGE 0.7220.011 0.1130.004 0.1180.005 0.0130.001

Q
W

E
N

-2
.5

-3
2B

Random 0.7360.013 0.1110.009 0.0460.009 0.0060.001
Balanced 0.7300.008 0.0960.008 0.0190.003 0.0030.000
Cfact. 0.7370.009 0.0910.004 0.0480.002 0.0050.001
Instruct 0.7410.011 0.1810.006 0.1050.007 0.0160.002
FairICL 0.7330.012 0.0890.006 0.0940.009 0.0040.001
FCG 0.7310.007 0.0370.005 0.0440.005 0.0020.000
FADS 0.7510.004 0.1220.004 0.0450.003 0.0060.000
JUDGE 0.7400.011 0.0280.004 0.0390.006 0.0010.001

larger jury sizes until we observe diminishing re- 888

turns in performance on the validation set. Specifi- 889

cally, if the relative improvement in both accuracy 890

and fairness metrics between two consecutive jury 891

sizes falls below 1%, we stop increasing the size. 892

This process led to the selection of m = 25 for 893

Adult and COMPAS datasets, and m = 50 for Law 894

School and ACS datasets. 895

The larger jury sizes for Law School and ACS 896

datasets were chosen because these datasets ex- 897

hibited continued performance improvements with 898

larger jury sizes. In contrast, Adult and COMPAS 899

datasets showed performance saturation at m = 25, 900

making larger jury sizes unnecessary. 901

For the fairness-accuracy trade-off parameter ω, 902

we select the value that achieves the lowest ∆DP 903

onDvalidation while maintaining accuracy within 3% 904

of the best performing configuration. 905

For the reduced candidate set size |Dreduced|, 906

we empirically evaluated different percentages of 907

Dcandidates from 1% to 5% in steps of 1%. When 908
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Table 8: Results for Law School with 10 demonstrations.
Each cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.9130.021 0.1930.013 0.3530.015 0.0360.005
Balanced 0.6880.020 0.3880.014 0.3570.016 0.0440.005
Cfact. 0.9120.021 0.2200.017 0.4750.021 0.0390.004
Instruct 0.9050.022 0.1770.017 0.3210.020 0.0170.002
FairICL 0.9030.013 0.3310.009 0.3280.007 0.0300.004
FCG 0.9320.011 0.0760.006 0.2390.011 0.0190.003
FADS 0.8890.005 0.2410.003 0.4530.003 0.0350.002
JUDGE 0.9220.0122 0.0690.005 0.1660.006 0.0120.001

M
IS

T
R

A
L

-7
B

Random 0.9240.015 0.1740.009 0.2870.011 0.0250.002
Balanced 0.8990.009 0.2240.008 0.4380.006 0.0340.003
Cfact. 0.9190.018 0.1940.008 0.4020.013 0.0270.003
Instruct 0.9330.012 0.0310.006 0.0390.003 0.0010.000
FairICL 0.9270.017 0.1790.004 0.2680.009 0.0240.002
FCG 0.9410.022 0.0480.004 0.0810.005 0.0120.006
FADS 0.9340.007 0.1080.006 0.2040.006 0.0210.003
JUDGE 0.9490.019 0.0260.004 0.0610.009 0.0040.000

G
E

M
M

A
-2

-9
B

Random 0.8760.006 0.3310.005 0.4390.003 0.0560.003
Balanced 0.7450.012 0.4160.009 0.3760.006 0.0530.004
Cfact. 0.7910.009 0.3710.005 0.3400.006 0.0470.004
Instruct 0.8810.005 0.3620.004 0.5340.007 0.0530.001
FairICL 0.8620.013 0.3140.008 0.3380.007 0.0430.002
FCG 0.8580.013 0.2290.008 0.2540.009 0.0310.002
FADS 0.8810.006 0.2900.006 0.5790.011 0.0540.004
JUDGE 0.8620.010 0.2120.004 0.1990.005 0.0210.001

Q
W

E
N

-2
.5

-3
2B

Random 0.8820.005 0.2950.007 0.5130.007 0.0480.003
Balanced 0.8420.008 0.3160.005 0.5540.012 0.0570.005
Cfact. 0.8450.006 0.3940.005 0.5410.004 0.0640.002
Instruct 0.8970.014 0.3510.007 0.6280.008 0.0790.003
FairICL 0.8780.015 0.2810.009 0.5240.005 0.0530.003
FCG 0.8790.017 0.2520.013 0.3180.016 0.0360.006
FADS 0.8960.022 0.2300.011 0.5200.015 0.0450.009
JUDGE 0.8830.021 0.2030.012 0.2880.017 0.0280.001

increasing the size from 1% to 3%, we observed909

average improvements of 2-3% in both accuracy910

and fairness metrics across all datasets. However,911

further increases beyond 3% showed minimal gains912

(< 0.5% improvement) while significantly increas-913

ing computational overhead. Therefore, we set914

|Dreduced| to 3% of |Dcandidates| for all experiments.915

All hyperparameter tuning is performed using916

only the validation set, with the test set remain-917

ing completely held out until final evaluation. To918

summarize, in our extensive experiments, we find919

that setting |Dreduced| to 3% of |Dcandidates| provides920

consistently good results across different datasets921

and models. Further, while m = 50 examples per922

group-label combination works reliably across all923

settings, m = 25 is often sufficient and more com-924

putationally efficient. Values of ω above 0.5, par-925

ticularly around 0.7, tend to provide better fairness-926

accuracy trade-offs. We intentionally keep the927

granularity of these parameter searches relatively928

coarse to maintain computational efficiency while929

still achieving strong performance. These settings 930

can serve as reliable defaults for practitioners. 931

B.12 Models and Software Used 932

Experiments were conducted using PyTorch (2.4.1), 933

and all models we use are publicly available on 934

HuggingFace. For SentenceBERT, we use the Sen- 935

tenceTransformers package, and we specifically 936

use the "all-mpnet-base-v2" variant, which has the 937

best reported performance. For the LLMs, we use 938

the base variants of all models (LLAMA-3-8B, 939

MISTRAL-7B, QWEN-2.5-32B, and Gemma-2- 940

9B). We downloaded them from HuggingFace via 941

the Transformers library, and we note that some 942

of them are gated models that require access to- 943

kens. For inference on these models, we turn off 944

sampling in all experiments, to get the desired de- 945

terministic behavior for In-Context Learning. 946

B.13 Computing Infrastructure 947

The experiments in this paper were conducted 948

across three different computing environments. 949

System A consisted of an Intel(R) Xeon(R) CPU 950

E5-2680 v4 @ 2.40GHz processor with 512GB 951

RAM and 8 NVIDIA V100 GPUs. System B uti- 952

lized an AMD Ryzen Threadripper PRO 5955WX 953

(16 cores) with 256GB RAM and dual NVIDIA 954

RTX 3090 GPUs. System C provided limited 955

access to a high-performance computing cluster 956

equipped with dual 64-core AMD EPYC 7763 pro- 957

cessors, 256GB DDR4 memory, and 4 NVIDIA 958

A100 GPUs. While we did not formally track 959

GPU hours, we estimate that the total computa- 960

tional effort across all experiments, including base- 961

line implementations, LLM training and inference, 962

methodology development, and ablation studies 963

exceeded well over a thousand GPU hours. This 964

estimate encompasses the entire research and devel- 965

opment cycle, including exploratory experiments, 966

hyperparameter optimization, model training itera- 967

tions, and evaluation runs. 968

C Complexity Comparison Across 969

Methods 970

Here, we provide a detailed comparison of the com- 971

putational complexity of various demonstration se- 972

lection methods in terms of LLM calls. 973

While all methods involve inference over the 974

test set which uses LLM calls, meaning they in- 975

herently contain an O(|Dtest|) term, this is dom- 976

inated by larger computational factors in all but 977
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the Naïve baselines, and is therefore omitted from978

the complexity expressions for clarity for the other979

baselines.980

C.1 Naïve Baselines (Counterfactual, Instruct,981

Random, etc.)982

These methods do not optimize demonstrations983

based on LLM feedback, meaning the only LLM984

calls occur during test-time inference:985

O(|Dtest|)986

C.2 FADS (Fairness-Aware Demonstration987

Selection)988

The primary computational cost in FADS arises989

from the model bias mitigation step, where LLM990

queries are made for all samples within a subset of991

clusters retained after filtering for data-bias.992

FADS first partitions the training data Dtrain into993

K clusters using K-means. After clustering, only994

Nd clusters are retained for fairness-aware demon-995

stration selection. Since each cluster contains ap-996

proximately |Dtrain|/K samples, the total number997

of LLM queries in this step is:998

O(Nd · |Dtrain|/K)999

where:1000

• Nd is the number of clusters retained after1001

filtering.1002

• |Dtrain| is the total size of the training dataset.1003

• K is the number of clusters initially created.1004

After this filtering step, demonstrations are se-1005

lected dynamically for each test instance based1006

on semantic similarity, but this retrieval step is1007

lightweight and does not require LLM calls. Thus,1008

the final complexity of FADS in terms of LLM1009

calls is:1010

O(Nd · |Dtrain|/K)1011

C.3 FCG (Fairness via Clustering-Genetic1012

Algorithm)1013

FCG iteratively refines demonstration selection us-1014

ing a genetic algorithm, making multiple LLM1015

calls per validation sample over I iterations:1016

O(I · |Ddev| · S)1017

where S is the number of subgroups as defined in1018

the paper, and Ddev is the validation dataset used1019

to assess demonstration fairness.1020

C.4 FairICL (Fair In-Context Learning via 1021

Latent Concept Variables) 1022

FairICL requires additional LLM calls for latent 1023

concept learning, followed by likelihood-based 1024

demonstration selection: 1025

O

(
T · |Dtrain|

B

)
+O(|Dtrain|) 1026

where T is the number of training epochs, B is 1027

batch size, and Dtrain is the training dataset used to 1028

learn the latent concept variable. 1029

C.5 Comparison Summary 1030

Table 9 summarizes the computational complex- 1031

ity of various demonstration selection methods in 1032

terms of LLM calls, which dominate the overall 1033

compute cost. 1034

Simpler baselines, such as Balanced, Ran- 1035

dom, Counterfactual, and Instruct require only 1036

O(|Dtest|) LLM calls, making them the most com- 1037

putationally efficient but very often lead to sub- 1038

optimal in fairness and accuracy as they do not 1039

optimize the demonstration specifically based on 1040

the LLM’s feedback. 1041

FADS significantly reduces LLM calls by lever- 1042

aging clustering and heuristic fairness scoring 1043

before querying the LLM. Its complexity, O(Nd · 1044

|Dtrain|/K), is linear in the training set size but 1045

avoids expensive iterative selection. 1046

FairICL introduces an additional concept- 1047

learning step that requires learning a latent fair- 1048

ness representation. This step adds overhead, 1049

making its complexity O(T · |Dtrain|
B ) +O(|Dtrain|), 1050

where T and B are training epochs and batch size, 1051

respectively. This method offers improved fairness 1052

guarantees at the cost of increased compute. 1053

FCG employs a genetic algorithm that itera- 1054

tively refines demonstration selection using valida- 1055

tion data. This results in O(I · |Ddev| · S) complex- 1056

ity, where I is the number of iterations and S is 1057

the number of demographic subgroups considered. 1058

The actual computational cost of FCG depends on 1059

the choice of these parameters. When |Ddev| is 1060

large or I is high, FCG can be computationally 1061

expensive, whereas for smaller values, it may be 1062

comparable to or even more efficient than methods 1063

that process larger training subsets. 1064

Exhaustive search, which evaluates all possible 1065

subsets of K-shot demonstrations, is prohibitively 1066

expensive with complexity O(NK), making it in- 1067

feasible for large N and K, as described in Section 1068

4. 1069
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Method LLM Calls Complexity
Naïve Methods (Random, Counterfactual, Instruct, etc.) O(|Dtest|)
FADS (Fairness-Aware Demonstration Selection) O(Nd · |Dtrain|/K)

FairICL (Latent Concept Learning) O(T · |Dtrain|
B ) +O(|Dtrain|)

FCG (Clustering-Genetic Algorithm) O(I · |Ddev| · S)
Exhaustive Search (Global Optimal Set) O(NK)

JUDGE (Ours) O(k · |Dreduced| · |J |)

Table 9: Comparison of LLM Calls Complexity Across Different Methods

JUDGE constructs a single optimized demon-1070

stration set. Its complexity, O(k · |Dreduced| · |J |),1071

scales with the reduced candidate set size |Dreduced|,1072

the number of fairness evaluations |J |, as de-1073

scribed in Section 4.1074

Overall, aside from the simpler baselines which1075

do not utilize any feedback from the LLM, the1076

computational efficiency of these methods depends1077

on the specific parameter choices. For example,1078

the relative efficiency of JUDGE compared to FCG1079

depends on how |Dreduced| compares to |Ddev| and1080

how the parameters I in FCG and J in JUDGE are1081

set.1082
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