Let The Jury Decide: Fair Demonstration Selection for InContext Learning through Incremental Greedy Evaluation

Sadaf MD Halim, Chen Zhao, Xintao Wu, Latifur Khan, Christan Earl Grant, Fariha Ishrat Rahman, Feng Chen

Fair In-Context Learning

Pretrained LLMs often encode demographic, societal, or linguistic preferences.

These issues can cause:

- Toxicity
- Stereotypical completions
- Irregularities in classification tasks

In-Context Learning (ICL)

- •ICL enables models to learn from a few examples at inference time.
- No fine-tuning required examples are provided as part of the input prompt.

Used in:

- Few-shot classification
- Question answering
- - Summarization

•Input Prompt = {Demo 1, Demo 2, ..., Demo k} + Test Query → Model Prediction

Why Demonstration Selection Is Critical

- •Demonstrations are the only supervision LLMs receive during inference.
- Poor selection can amplify irresponsible outputs and reduce accuracy.

Impacts of demo selection:

- Prediction accuracy
- Generalization across subgroups
- Unfair outcomes for certain groups

Responsible In-Context Classification

Goal: Maximize metrics like Demographic Parity, Equalized Odds 🥦

Challenges:

- Select k (typically 5 or 10) from n demonstrations (where n is a large number)
- - Ensure responsible outputs
- Retain predictive utility (accuracy, F1)

JUDGE (**JU**ry-based **D**emonstration Selection via **G**reedy **E**valuation)

Our approach, JUDGE addresses demonstration selection through a multi-step process.

- 1. Jury Set Selection: Creating a set of examples for greedy evaluation.
- Candidate Pruning: Reducing the pool of candidates to a much smaller pool.
- 3. **Iterative Greedy Selection:** Building the final demonstration set greedily by using performance on the jury set as a heuristic.

The Jury Set, ${\cal J}$

A carefully constructed group of examples, providing a balanced representation across all combinations of groups and labels.

$$\mathcal{C} = \{(g, y) : g \in \mathcal{G}, y \in \mathcal{Y}\}$$

Each subset $oldsymbol{\mathcal{J}}_{(g,\,\,ee)}$ consists of $|oldsymbol{\mathcal{J}}|\,/\,|C|\,$ examples

Uses SentenceBERT embeddings and the cosine similarity measure:

$$sim(x_i, x_j) = \frac{e(x_i) \cdot e(x_j)}{\|e(x_i)\| \|e(x_j)\|}$$

The Jury Set, ${\cal J}$

Each example is chosen such that it maximizes distance from existing examples.

Each example is
$$\mathcal{J}_{g,y} = \{x_1,...,x_m\}$$
 where chosen such that it $x_i = \arg\min_{x \in \mathcal{D}_{g,y} \setminus \{x_1,...,x_{i-1}\}} \max_{j < i} \sin(x,x_j)$

Finally, we have: $\mathcal{J} = \bigcup_{(g,y) \in \mathcal{C}} \mathcal{J}_{g,y}$

Candidate Pruning

We similarly prune the space of candidates (down to ~3%)

$$\mathcal{D}_{reduced} = \{x_1, ..., x_n\}$$
 where $x_i = rg \min_{x \in \mathcal{D}_{candidate} \setminus \{x_1, ..., x_{i-1}\}} \max_{j < i} \sin(x, x_j)$

Objective and Score Functions

Our objective provides a balance between performance in terms of accuracy (denoted by a) and metrics like Demographic Parity (denoted by f)

$$\mathcal{S}^* = \operatorname{argmax}_{\mathcal{S} \subseteq \mathcal{D}_{reduced}, |\mathcal{S}| = k} \operatorname{score}(\mathcal{S}, \mathcal{J})$$

$$score(\mathcal{S}, \mathcal{J}) = \omega \cdot f(\mathcal{S}, \mathcal{J}) + (1 - \omega) \cdot a(\mathcal{S}, \mathcal{J})$$

Greedy Selection

- 1. We start with the empty set, $S_0 = \emptyset$
- 2. Select the first example that maximizes score on the jury set.

$$x_1 = \arg \max_{x \in \mathcal{D}_{reduced}} \operatorname{score}(\{x\}, \mathcal{J})$$

- 1. Add the selected example to the demonstration set. $S_1 = \{x_1\}$
- At each step t, select the candidate that maximizes score when added to the current set.

$$x_t = \arg \max_{x \in \mathcal{D}_{\text{reduced}} - S_{t-1}} \text{score}(S_{t-1} \cup \{x\}, \mathcal{J})$$

- 1. Update the selected set with the newly chosen example. $S_t = S_{t-1} \cup \{x_t\}$
- 2. Repeat the process until k examples are selected. $|S_t| = k$

Overview

Datasets and Baselines

Datasets:

Baselines:

Adult

COMPAS

Law School

ACS-Income

Random

Balanced

Counterfactual

Instruct

FairICL

FCG

FADS

Results

Table 1: Results for Adult with 5 demonstrations, across 4 LLMs. Each cell shows $Mean_{S.D.}$

Method		Acc.↑	$\Delta \mathrm{DP} \downarrow$	$\Delta \mathbf{EO} \downarrow$	MI↓
	Random	0.7720.008	0.1850.004	0.1910.006	0.0230,002
LLAMA-3-8B	Balanced	$0.706_{0.015}$	$0.216_{0.011}$	$0.146_{0.014}$	$0.022_{0.001}$
	Cfact.	$0.731_{0.017}$	$0.185_{0.019}$	$0.158_{0.023}$	$0.018_{0.003}$
	Instruct	$0.753_{0.013}$	$0.299_{0.011}$	$0.308_{0.012}$	$0.052_{0.006}$
	FairICL	$0.764_{0.009}$	$0.170_{0.004}$	$0.097_{0.008}$	0.0160.002
	FCG	$0.795_{0.011}$	$0.097_{0.009}$	$0.157_{0.006}$	$0.011_{0.001}$
	FADS	$0.743_{0.015}$	$0.157_{0.012}$	$0.114_{0.014}$	$0.019_{0.003}$
	JUDGE	$0.798_{0.012}$	$0.078_{0.011}$	$0.049_{0.012}$	0.0040,001
MISTRAL-7B	Random	0.7090.013	0.2010.010	0.1240.009	0.0190.003
	Balanced	$0.594_{0.014}$	$0.230_{0.011}$	$0.185_{0.012}$	0.0250.004
	Cfact.	$0.722_{0.011}$	$0.143_{0.008}$	$0.193_{0.013}$	0.0110.003
	Instruct	$0.729_{0.021}$	$0.162_{0.019}$	$0.171_{0.023}$	$0.015_{0.004}$
	FairICL	$0.761_{0.006}$	$0.151_{0.011}$	$0.159_{0.007}$	$0.012_{0.002}$
	FCG	$0.752_{0.015}$	$0.132_{0.014}$	$0.093_{0.019}$	$0.006_{0.001}$
	FADS	$0.769_{0.009}$	$0.180_{0.008}$	$0.129_{0.005}$	$0.021_{0.002}$
	JUDGE	$0.767_{0.012}$	$0.101_{0.009}$	$0.024_{0.005}$	0.0060,001
GEMMA-2-9B	Random	0.754 _{0.006}	0.3940,008	0.4230,013	0.0910.005
	Balanced	$0.701_{0.014}$	$0.482_{0.023}$	$0.413_{0.026}$	$0.113_{0.021}$
	Cfact.	$0.752_{0.015}$	$0.311_{0.015}$	$0.372_{0.011}$	0.0870,016
	Instruct	$0.742_{0.011}$	$0.428_{0.009}$	$0.479_{0.013}$	$0.108_{0.008}$
	FairICL	$0.753_{0.014}$	$0.318_{0.019}$	$0.392_{0.026}$	$0.089_{0.013}$
	FCG	$0.755_{0.017}$	$0.233_{0.025}$	$0.192_{0.018}$	$0.013_{0.003}$
	FADS	$0.759_{0.013}$	$0.353_{0.011}$	$0.387_{0.016}$	0.0720,006
	JUDGE	$0.769_{0.012}$	$0.177_{0.018}$	$0.101_{0.009}$	$0.018_{0.003}$
QWEN-2.5-32B	Random	0.7450.012	0.2150.010	0.1320.010	0.0230.004
	Balanced	$0.708_{0.014}$	$0.245_{0.013}$	$0.165_{0.012}$	0.0270.003
	Cfact.	$0.748_{0.014}$	$0.225_{0.014}$	$0.143_{0.011}$	$0.025_{0.003}$
	Instruct	$0.733_{0.007}$	$0.239_{0.013}$	0.1610.009	$0.026_{0.005}$
	FairICL	$0.743_{0.009}$	$0.192_{0.012}$	0.1470.015	$0.027_{0.009}$
	FCG	$0.762_{0.013}$	$0.111_{0.014}$	$0.098_{0.013}$	0.0070.002
	FADS	$0.712_{0.009}$	$0.220_{0.007}$	$0.141_{0.006}$	0.023,003
	JUDGE	$0.771_{0.008}$	$0.096_{0.005}$	$0.062_{0.004}$	0.0050,001

Table 2: Results for COMPAS with 5 demonstrations, across 4 LLMs. Each cell shows $Mean_{S.D.}$

Method		Acc.↑	$\Delta \mathrm{DP} \downarrow$	$\Delta EO \downarrow$	МІ↓
	Random	0.6170.011	0.2090.009	0.1990.008	0.0210.003
	Balanced	$0.620_{0.012}$	$0.235_{0.011}$	$0.218_{0.013}$	0.0270,002
æ	Cfact.	$0.582_{0.009}$	$0.187_{0.006}$	$0.193_{0.007}$	0.0170,001
ઌૢૼ	Instruct	$0.566_{0.010}$	$0.135_{0.009}$	$0.164_{0.010}$	0.0150,001
LAMA-3-8B	FairICL	$0.621_{0.009}$	$0.192_{0.007}$	$0.188_{0.006}$	$0.020_{0.002}$
⋛	FCG	$0.614_{0.007}$	$0.182_{0.005}$	$0.197_{0.005}$	$0.019_{0.001}$
-	FADS	$0.575_{0.008}$	$0.167_{0.006}$	$0.160_{0.005}$	$0.014_{0.002}$
_	JUDGE	$0.656_{0.010}$	$0.105_{0.008}$	$0.082_{0.007}$	$0.006_{0.001}$
	Random	0.5130.012	0.097 _{0.008}	0.1200009	0.0160.002
	Balanced	$0.512_{0.007}$	$0.079_{0.005}$	$0.083_{0.004}$	$0.013_{0.003}$
7B	Cfact.	$0.487_{0.010}$	$0.059_{0.009}$	$0.062_{0.009}$	$0.015_{0.004}$
MISTRAL-7B	Instruct	$0.497_{0.012}$	$0.082_{0.010}$	$0.105_{0.008}$	$0.014_{0.002}$
₽	FairICL	$0.515_{0.006}$	$0.082_{0.005}$	$0.098_{0.005}$	$0.017_{0.004}$
ST	FCG	$0.489_{0.009}$	$0.074_{0.004}$	$0.108_{0.006}$	$0.013_{0.003}$
₹	FADS	$0.531_{0.010}$	$0.091_{0.005}$	$0.117_{0.007}$	$0.015_{0.009}$
	JUDGE	$0.541_{0.007}$	$0.055_{0.004}$	$0.075_{0.004}$	0.0020.000
	Random	0.6150.008	0.3100.005	0.3140.006	0.0490.003
	Balanced	$0.601_{0.009}$	$0.359_{0.006}$	$0.348_{0.005}$	$0.067_{0.004}$
9B	Cfact.	$0.604_{0.007}$	$0.261_{0.004}$	$0.272_{0.005}$	0.0440,005
-7	Instruct	$0.609_{0.011}$	$0.291_{0.009}$	$0.309_{0.012}$	0.0470.006
GEMMA-2-9B	FairICL	$0.622_{0.010}$	$0.265_{0.011}$	$0.282_{0.012}$	$0.040_{0.005}$
Ž	FCG	$0.648_{0.007}$	$0.099_{0.003}$	$0.091_{0.005}$	$0.008_{0.003}$
뜅	FADS	$0.621_{0.014}$	$0.307_{0.011}$	$0.303_{0.09}$	$0.053_{0.009}$
•	JUDGE	$0.665_{0.006}$	$0.062_{0.002}$	$0.039_{0.003}$	$0.002_{0.000}$
	Random	0.6370.007	0.2420.005	0.2210.006	0.0290.003
m	Balanced	$0.652_{0.008}$	$0.248_{0.007}$	$0.240_{0.011}$	$0.031_{0.005}$
321	Cfact.	$0.611_{0.008}$	$0.244_{0.006}$	$0.228_{0.006}$	$0.031_{0.004}$
Ś	Instruct	$0.633_{0.006}$	$0.234_{0.003}$	$0.214_{0.004}$	$0.026_{0.002}$
Z-2	FairICL	$0.639_{0.008}$	$0.211_{0.005}$	$0.218_{0.005}$	$0.025_{0.003}$
鱼	FCG	$0.623_{0.006}$	$0.149_{0.004}$	$0.144_{0.003}$	$0.018_{0.003}$
QWEN-2.5-32B	FADS	$0.645_{0.008}$	$0.224_{0.006}$	$0.207_{0.004}$	$0.025_{0.003}$
9	JUDGE	$0.649_{0.004}$	$0.138_{0.005}$	$0.134_{0.003}$	$0.010_{0.001}$

Greedy vs Top-K

(a) Adult dataset

(b) COMPAS dataset

Effect of Jury Set Size

