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Abstract001

Multi-modal retrieval-augmented Question An-002
swering (MRAQA), integrating text and im-003
ages, has gained significant attention in in-004
formation retrieval (IR) and natural language005
processing (NLP). Traditional ranking meth-006
ods rely on small encoder-based language007
models, which are incompatible with modern008
decoder-based generative large language mod-009
els (LLMs) that have advanced various NLP010
tasks. To bridge this gap, we propose RAMQA,011
a unified framework combining learning-to-012
rank methods with generative permutation-013
enhanced ranking techniques. We first train014
a pointwise multi-modal ranker using LLaVA015
as the backbone. Then, we apply instruction016
tuning to train a LLaMA model for re-ranking017
the top-k documents using an innovative au-018
toregressive multi-task learning approach. Our019
generative ranking model generates re-ranked020
document IDs and specific answers from docu-021
ment candidates in various permutations. Ex-022
periments on two MRAQA benchmarks, We-023
bQA and MultiModalQA, show significant im-024
provements over strong baselines, highlighting025
the effectiveness of our approach. Data and026
code will be made public once the paper is ac-027
cepted.028

1 Introduction029

Multi-modal retrieval-augmented question answer-030

ing (MRAQA) involves searching and integrating031

information from diverse modalities such as text032

and images (Talmor et al., 2021; Chang et al., 2021)033

(see Figure 1). This capability is crucial for applica-034

tions requiring comprehensive understanding and035

reasoning. While powerful generative language036

models have revolutionized NLP, achieving state-037

of-the-art results across various tasks (Wu et al.,038

2024; Touvron et al., 2023; Liu et al., 2023), lever-039

aging these advanced LLMs for information re-040

trieval tasks like MRAQA remains challenging.041

Existing MRAQA methods rely on small042

encoder-based ranking models (Hu et al., 2022b;043

Question:  Does the Manx Loaghtan ram and the Zackel (racka) sheep both have 
twisted horns?

Answer:  Yes, both Manx Loaghtan ram and Zackel(racka) sheep have twisted horns.

Manx Loaghtan 
Ram, 2 horns

Zackelschafe Tiergarten 
Bernburg 06-03-2008

Dorset sheep

Jacob sheep

A black hebridian 
sheep front horns

Title: Castlemilk Moorit
The Castlemilk Moorit is a rare breed
of domestic sheep (also known as
Moorit Shetland, Milledge Sheep, or
Castlemilk Shetland) originating in
Dumfriesshire in Scotland. Created as
a decorative breed in the 1900s to
adorn the parkland of Sir John
Buchanan Jardine's estate, it is a
mixture of several primitive types:
Manx Loaghtan, Shetland and wild
mouflon.
…

Title: Racka 
The Racka or
Hortobágy Racka
Sheep has been kept
by Hungarians for
many centuries and
was once the most
common variety in
Hungary.
…

Title: Manx Loaghtan
The Manx Loaghtan is a rare
breed of sheep (Ovis aries)
native to the Isle of Man. It is
sometimes spelled as
Loaghtyn or Loghtan. The
sheep have dark brown wool
and usually four or
occasionally six horns.
…

…

Figure 1: An example in WebQA (Chang et al., 2021), a
Multi-modal Open-domain Question-Answering bench-
mark. This task requires the system to precisely iden-
tify critical sources from distractors and use these key
sources to infer the answers.

Yang et al., 2023a,b), which are not fully compati- 044

ble with modern large generative language models. 045

Although recent generative LLMs trained on mas- 046

sive datasets have dominated NLP tasks, they are 047

typically decoder-only, making it challenging to 048

encode documents into dense representations as 049

encoder-based models do. 050

Generative retrieval paradigms (Metzler et al., 051

2021; Tay et al., 2022; Wang et al., 2022b) differ 052

from traditional retrieval methods by directly gen- 053

erating relevant document identifiers for a query. 054

However, applying these methods to multi-modal 055

information retrieval faces challenges: (1) multi- 056

modal documents have aspects not effectively rep- 057

resented by static identifiers; (2) existing multi- 058

modal LLMs are not structured or pretrained to 059

infer across multiple multi-modal documents; (3) 060

LLMs’ limited input sequence length hinders rank- 061

ing many documents in a single run. 062
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To address these challenges, we propose063

RAMQA, a unified framework combining tradi-064

tional learning-to-rank methods with generative065

ranking. First, we train a pointwise multi-modal066

ranker based on LLaVA (Liu et al., 2023) as a067

multi-modal data encoder. Second, we employ068

instruction tuning (Ouyang et al., 2022) to train a069

LLaMA (Touvron et al., 2023) model to re-rank070

the top-k documents using a novel autoregressive071

multi-task learning approach. Before the second-072

stage retrieval, we unify multi-modal documents073

into text representations using a zero-shot LLaVA074

model. This provides context for all candidate doc-075

uments, reducing the LLM’s burden to memorize076

relationships between queries and document identi-077

fiers, making it more efficient than previous meth-078

ods. Our generative ranking model is trained in a079

multi-task manner, generating relevant documents080

and extracting exact answers. To reduce bias from081

input document sequences, we use permutations of082

document candidates. We demonstrate the effec-083

tiveness of these methods through comprehensive084

ablation studies.085

Experiments on two benchmarks, WebQA086

(Chang et al., 2021) and MultimodalQA (Talmor087

et al., 2021), demonstrate significant improvements088

over strong baselines, highlighting our approach’s089

effectiveness in enhancing multi-modal retrieval-090

augmented QA systems.1091

In summary, our contributions are as follows:092

• Unified Framework: We develop RAMQA,093

a unified framework for Retrieval-Augmented094

Multi-modal Question Answering, which095

combines traditional learning-to-rank meth-096

ods with generative ranking techniques.097

• Innovative Multi-Stage Process: We intro-098

duce a two-stage approach with a fine-tuned099

LLaVA for multi-modal pointwise ranking,100

and a fine-tuned LLaMA for generative re-101

ranking, enhanced by multi-task learning and102

document permutation techniques.103

• Comprehensive Evaluation: We demon-104

strate the effectiveness of the proposed105

methods through a thorough ablation study106

and achieved significant improvements over107

strong baselines on two benchmark datasets,108

WebQA and MultimodalQA.109

1We achieved fourth place on the WebQA leaderboard:
https://eval.ai/web/challenges/challenge-page/
1255/leaderboard/3168; to our knowledge, the top three
works were unpublished at submission time.

2 Related Work 110

2.1 Multi-Modal Retrieval-Augmented 111

Question Answering 112

Multi-modal retrieval-augmented question answer- 113

ing (MRAQA) integrates information from various 114

modalities, such as text, images, and tables, to an- 115

swer complex questions. Benchmark datasets like 116

MultimodalQA (Talmor et al., 2021) and WebQA 117

(Chang et al., 2021) have been developed to address 118

these challenges. 119

Recent frameworks like MuRAG (Hu et al., 120

2022b), SKURG (Yang et al., 2023a), and PERQA 121

(Yang et al., 2023b) have made significant strides 122

in MRAQA by integrating text and image data us- 123

ing retrieval and generation techniques. However, 124

these methods primarily rely on encoder-based 125

models and structured knowledge, limiting their 126

ability to fully leverage the capabilities of state-of- 127

the-art multi-modal generative LLMs. Our work 128

addresses this gap by introducing a novel frame- 129

work that combines traditional ranking with multi- 130

modal generative LLMs, offering a more robust 131

solution for MRAQA. 132

2.2 Learning-to-Rank 133

Learning-to-Rank (LTR) techniques optimize item 134

ranking in information retrieval systems based 135

on relevance. These models include pointwise 136

(Cossock and Zhang, 2006; Liu, 2009; Li, 2011; 137

Nogueira and Cho, 2019; Nogueira et al., 2019), 138

pairwise (Freund et al., 2003; Clark et al., 2020; 139

Li et al., 2023a), and listwise (Cao et al., 2007; Ai 140

et al., 2019; Zhang et al., 2018) approaches. The 141

advent of Transformer encoders like BERT (De- 142

vlin et al., 2019) and RoBERTa (Liu et al., 2019) 143

has significantly enhanced LTR by enabling more 144

accurate relevance scoring. 145

Recent advancements have explored using large 146

language models (LLMs) in LTR. For example, 147

RankLLaMA (Ma et al., 2024) fine-tuned the 148

LLaMA model, demonstrating that decoder-based 149

LLMs can surpass traditional encoder-based mod- 150

els in ranking tasks. Building on this, we fine-tuned 151

LLaVA (Liu et al., 2023), a multi-modal LLM that 152

combines LLaMA with the CLIP visual encoder 153

ViT-L/14 (Dosovitskiy et al., 2021), creating Ran- 154

kLLaVA, a multi-modal pointwise ranker that en- 155

hances ranking performance by leveraging both 156

language and visual data. 157
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Title: Zackel 
(racka) sheep, 

The image
features a group
of five sheep of
the same breed,
which is the
Magyar Racka
Juh. The horns of
the Magyar
Racka Juh are
curved and
pointy, …

Title: Manx 
Loaghtan
The Manx 
Loaghtan is a rare 
breed of sheep 
(Ovis aries) native 
to the Isle of Man. 
It is sometimes 
spelled as Loaghtyn 
or 

Loghtan. The sheep 
have dark brown 
wool and usually fo

Cache

Zackelschafe 
Tiergarten 
Bernburg 06-
03-2008

Title: Manx 
Loaghtan
The Manx 
Loaghtan is a rare 
breed of sheep 
(Ovis aries) native 
to the Isle of Man. 
It is sometimes 
spelled as Loaghtyn 
or 

Loghtan. The sheep 
have dark brown 
wool and usually fo

Title: Racka 
The Racka or 
Hortobágy Racka 
Sheep has been 
kept by Hungarians 
for many centuries 
and was once the 
most common 
variety in Hungary. 
…

Image to Text 
(Zero-shot)

Question:  Does the 
Manx Loaghtan ram and 
the Zackel (racka) sheep 
both have twisted horns?

Multi-task 
Generation

(RAMLLaMA)

Answer:
Yes, both Manx Loaghtan 
ram and Zackel(racka) 
sheep have twisted horns.

First Stage Ranking Second Stage Ranking & QA

Title: Racka 
The Racka or 
Hortobágy Racka 
Sheep has been 
kept by 
Hungarians for 
many centuries 
and was once the 
most common 
variety in 
Hungary. 

Title: Manx 
Loaghtan
The Manx 
Loaghtan is a rare 
breed of sheep 
(Ovis aries) native 
to the Isle of Man. 
It is sometimes 
spelled as 
Loaghtyn or 
Loghtan. The

Title: Castlemilk 
Moorit
The Castlemilk
Moorit is a rare
breed of domestic
sheep (also known
as Moorit
Shetland, Milledge
Sheep, or
Castlemilk
Shetland)Zackelschafe 

Tiergarten 
Bernburg 06-
03-2008

A black 
hebridian sheep 
front horns

Jacob sheep
Manx Loaghtan 
Ram, 2 horns

Manx Loaghtan 
Ram, 2 horns

Manx Loaghtan 
Ram, 2 horns

Zackelschafe 
Tiergarten 
Bernburg 06-
03-2008

Multi-modal 
Pointwise Ranking

(RankLLaVA)

Title: Racka 
The Racka or 
Hortobágy Racka 
Sheep has been 
kept by Hungarians 
for many centuries 
and was once the 
most common 
variety in Hungary. 
…

Title: Manx 
Loaghtan 
Ram, 2 
horns

The image 
features a 
brown sheep 
with two 
curved 
horns…

Figure 2: RAMQA Framework Overview. A detailed description of the three main components—RankLLaVA,
Data Unification (Image to Text), and RAMLLaMA—is provided in Sections 3.2, 3.3.1, and 3.3.2, respectively.

2.3 Generative Retrieval158

Generative retrieval techniques (Tay et al., 2022;159

Tang et al., 2023; Bevilacqua et al., 2022; Zhang160

et al., 2024; Li et al., 2023b) represent a shift from161

traditional retrieval methods by directly generating162

document identifiers (DocIDs) for a query using163

generative models. Advances like Differentiable164

Search Index (DSI) (Tay et al., 2022) and SEAL165

(Bevilacqua et al., 2022) have introduced more ef-166

ficient and effective retrieval processes. However,167

these methods primarily focus on unimodal data168

and often struggle with integrating multi-modal169

information.170

Our work addresses this limitation by introduc-171

ing a unified framework that combines multi-modal172

pointwise learning-to-rank with generative ranking173

in a two-stage retrieval process, effectively bridg-174

ing the gap in multi-modal retrieval.175

3 Methodology176

In this section, we provide a comprehensive de-177

scription of our proposed framework designed to178

address multi-modal learning-to-rank and genera-179

tive retrieval tasks. We start by defining these tasks180

and then explore the structure and training method-181

ologies of our unified framework, as outlined in182

Figure 2.183

3.1 Preliminaries184

3.1.1 Task Definition185

Given a question Q and a set of input documents186

D = {d1, d2, . . . , dn}, where n represents the187

number of documents and each document may188

be a text with a title or an image with a caption,189

MRAQA aims to retrieve evidence from D and gen-190

erate an answer A based on the retrieved evidence.191

Although the MRAQA task can encompass other192

document modalities like tables, audio, and video, 193

this paper focuses specifically on text passages and 194

images. Unlike a typical end-to-end multi-stage re- 195

trieval pipeline (Yates et al., 2021), which includes 196

a retriever (Karpukhin et al., 2020) to efficiently lo- 197

cate the top-k relevant texts from a corpus, followed 198

by multiple rerankers (Nogueira and Cho, 2019) to 199

refine the retrieved candidates, our approach in this 200

paper centers on the reranking stage. Specifically, 201

we assume the input documents include positive 202

evidence and distractors (hard negatives) from the 203

datasets, rather than the full document corpus. 204

3.1.2 LLaMA 205

LLaMA (Touvron et al., 2023) is a large language 206

model based on the Transformer architecture, op- 207

erating in an auto-regressive, decoder-only man- 208

ner. With billions of parameters, it is pre-trained 209

on a massive dataset of web content. As a uni- 210

directional model, its attention mechanism only 211

considers the preceding elements in the input se- 212

quence to make predictions. Specifically, for a 213

given input sequence s = [t1, t2, . . . , tn−1], the 214

model predicts the next token tn based solely on the 215

prior tokens. This prediction process is mathemati- 216

cally expressed as P (tn|t1, t2, . . . , tn−1), where P 217

denotes the probability of the next token tn in the 218

sequence. 219

3.1.3 LLaVA 220

LLaVA (Liu et al., 2023) extends the LLaMA 221

model to handle multi-modal inputs, specifically 222

text and images, by incorporating a vision en- 223

coder alongside its Transformer-based architecture. 224

LLaVA retains the auto-regressive, decoder-only 225

structure for text generation, while its vision en- 226

coder, often based on a pre-trained Vision Trans- 227

former (ViT) (Dosovitskiy et al., 2021), processes 228
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images by extracting a sequence of visual features229

from different regions (patches) of the image.230

These patch-level embeddings are then com-231

bined to form a sequence of visual tokens,232

which are integrated with the text tokens. The233

resulting multi-modal input sequence x =234

[v1, v2, . . . , vm, t1, t2, . . . , tn−1] consists of both235

visual tokens v1, v2, . . . , vm from the image and236

text tokens t1, t2, . . . , tn−1 from the query.237

This multi-modal sequence is fed into the Trans-238

former model, enabling it to predict the next token239

tn based on both visual and textual context. The240

prediction process is mathematically expressed as:241

P (tn|v1, v2, . . . , vm, t1, . . . , tn−1), where P repre-242

sents the probability of the next token tn, condi-243

tioned on both the visual features v1, v2, . . . , vm244

and prior tokens. This integration of detailed image245

features with text allows LLaVA to perform tasks246

requiring sophisticated reasoning over both visual247

and textual inputs, such as multi-modal question248

answering and image captioning.249

3.2 RankLLaVA for Multi-modal Pointwise250

Ranking251

Our first-stage ranking model, named RankLLaVA,252

is trained as a pointwise ranker. This method in-253

volves feeding both the query and a candidate doc-254

ument into the model, which then generates a rel-255

evance score indicating how well the document256

matches the query (Nogueira and Cho, 2019). The257

backbone model is initialized with LLaVA.258

Traditionally, pointwise ranking models use bi-259

directional encoder-only models like BERT, where260

the [CLS] token is added at the beginning of the261

input sequence, and its hidden representation is262

used to represent the entire sequence. In contrast,263

since LLaVA is unidirectional, we append an end-264

of-sequence token (</s>) to the input query or265

document, and the hidden representation of this266

</s> token is used to represent the input sequence267

in LLaVA.268

RankLLaVA is trained on query-document pairs269

as detailed in Algorithm 1. To compute the query-270

document similarity score, we utilize the LLaVA271

model’s image encoder, tokenizer, and decoder as272

described in (Liu et al., 2023). We process the input273

through these components to obtain the hidden rep-274

resentations of the tokens. Specifically, we extract275

the hidden representation of the last token in the276

sequence from the decoder’s last layer. This repre-277

sentation is then passed through a linear layer, and278

a sigmoid activation function is applied to produce279

Algorithm 1 RankLLaVA Training Procedure

Require: Training dataset D = {(Qi, di, yi)}Ni=1

where Qi is a textual question, di is a multi-modal
document with image part di_image and text part di_text,
and yi is the ground truth label (1 if di is relevant to Qi,
0 otherwise).

Ensure: Trained RankLLaVA model
1: for each (Qi, di, yi) ∈ D do
2: Construct Input:
3: Concatenate the document text with an image place-

holder:
d′i = “<image> di_text”

4: Construct the prompt by combining the question and
the document:

prompt = “Question: Qi Document: d′i </s>”
5: Compute Embeddings:
6: Encode the image part using the image encoder:

[v1, v2, . . . , vm] = ImgEncoder(di_image)
7: Tokenize the prompt and obtain token embeddings:

[t1, t2, . . . , tn] = Tokenizer(prompt)
8: Combine image features and token embeddings:

emb_seq = [v1, v2, . . . , vm, t1, t2, . . . , tn]
9: Forward Pass:

10: Pass the combined embedding sequence through the
decoder:

hidden_states = Decoder(emb_seq)
11: Extract the hidden representation of the last token:

hi = hidden_states[−1]
12: Compute the similarity score:

Sim(Qi, di) = σ(Linear(hi))
13: Compute Loss:
14: Compute the cross-entropy loss:

ℓrank_i = −yi log(Sim(Qi, di)) − (1 − yi) log(1 −
Sim(Qi, di))

15: end for
16: Update Model Parameters:
17: Optimize the model parameters to minimize the total loss:

L =
∑N

i=1 ℓrank_i
18: return Trained RankLLaVA model

the final similarity score between the query and the 280

document. 281

3.3 Multi-task Generation 282

We now introduce the second stage of our frame- 283

work, which functions as a multi-task generator 284

for second-stage ranking and question answering. 285

This stage is designed to accurately identify the 286

correct documents from the top-k candidates pre- 287

dicted by the first-stage ranker that can assist in 288

answering the question. Simultaneously, it gener- 289

ates the answer based on the identified documents. 290

We experimentally show that this additional objec- 291

tive makes the model’s ranking performance more 292

robust. 293

3.3.1 Data Unification 294

We begin by unifying data from different modali- 295

ties by converting images to text using a pre-trained 296

LLaVA model with a customized prompt, follow- 297

ing the format used during LLaVA’s training. Fig- 298
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• Prompt:
“USER:  Create a detailed description for the image, <image>,  
with the caption: ‘{Caption}’. 

Your description should provide enough detail to help answer 
the question: ‘{Question}’.

However, if the subject mentioned in the caption is not 
relevant to the question, you can disregard the question when 
creating your description. 

ASSISTANT:”

Output:
The image features a brown sheep with two curved horns, which 
are characteristic of a Manx Loaghtan ram. 

Inputs:
• Image: • Caption: 

Manx Loaghtan Ram, 2 horns

• Question: 
Does the Manx Loaghtan ram and 
the Zackel (racka) sheep both have 
twisted horns?

Figure 3: Zero-shot image description generation for
data modality unification.

ure 3 illustrates an example of our zero-shot image-299

to-text generation. This transformation serves two300

key purposes. First, it aligns with the pre-training301

process of LLMs, which, to our knowledge, have302

not been pre-trained with multiple images as input.303

To leverage the existing knowledge of pre-trained304

multi-modal LLMs and avoid costly re-training,305

we use LLaVA as a pointwise ranker and single-306

image description generator rather than as a list-307

wise multi-modal ranker. Second, transforming308

images into sentence-level descriptions optimizes309

input size. By conserving input token capacity,310

we can include more documents within the LLM’s311

input sequence, ultimately enhancing ranking per-312

formance.313

3.3.2 RAMLLaMA314

Our second-stage ranking and question-answering315

model, RAMLLaMA (Retrieval-Augmented Multi-316

task LLaMA), is trained autoregressively using in-317

struction tuning (Ouyang et al., 2022). Given a318

prompt comprising a question and the top-k unified319

candidate documents from the first-stage ranking,320

along with their IDs, the model generates the rele-321

vant document IDs and the answer.322

To prevent the model from overfitting to the se-323

quence of input documents, we permute the candi-324

date documents five times for each question during325

Algorithm 2 RAMLLaMA Training Procedure
Require: Pre-trained LLaMA model M, training dataset
D = {(Qi, Di, Ai)}Ni=1

where Qi is a question, Di = {di1, di2, . . . , dik}
is the set of top-k candidate documents, and Ai is the
ground-truth answer.

Ensure: Fine-tuned RAMLLaMA modelM′

1: for each (Qi, Di, Ai) ∈ D do
2: Construct Input Prompt:
3: Randomly permute the order of {ti1, ti2, . . . , tik} to

get {t′i1, t′i2, . . . , t′ik}
4: Create input prompt Pi:

Pi ← “Question: Qi \\Documents:
[DocID: 1] t′i1
[DocID: 2] t′i2
...
[DocID: k] t′ik”

5: Construct Target Output:
6: Identify relevant document IDs Ri ⊆ {1, 2, . . . , k}

supporting Ai

7: Create target output Ti:
Ti ← “Relevant Document IDs: Ri \\Answer: Ai”

8: Fine-tune LLaMA:
9: OptimizeM to minimize loss L over (Pi, Ti):

L = −
∑

(Pi,Ti)
logPM(Ti | Pi)

10: end for
11: return Fine-tuned modelM′

training, effectively increasing the training set size 326

fivefold. We demonstrate the effectiveness of this 327

approach in the ablation studies. 328

The training procedure for RAMLLaMA is de- 329

tailed in Algorithm 2. Please refer to Appendix A 330

for a training example. 331

4 Experiments 332

4.1 Datasets 333

We conduct experiments on two widely used 334

MRAQA datasets: WebQA (Chang et al., 2021) 335

and MultimodalQA (Talmor et al., 2021). The 336

dataset statistics are presented in Table 1. 337

4.1.1 WebQA 338

WebQA (Chang et al., 2021) contains multi-hop, 339

multi-modal question-answer pairs, where each 340

query, typically requiring 1-2 images or text doc- 341

uments, is paired with around 40 multi-modal 342

distractors (hard negatives). Although the input 343

sources are multi-modal, the questions are entirely 344

text-based. Answers are free-form sentences. Eval- 345

uation metrics include source retrieval F1 and a QA 346

score, which combines BARTScore-based (Yuan 347

et al., 2021) fluency and relevance (QA-FL) with 348

keyword accuracy (QA-Acc). The overall QA 349

score, a product of QA-FL and QA-Acc, is the 350

key metric for WebQA. 351
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Dataset Train Dev Test
Image/Text Image/Text Image/Text

WebQA 18K/17K 2.5K/2.4K 3.4K/4K
MultimodalQA 3.6K/7.5K 371/721 -

Table 1: Overall Statistics of benchmark datasets.

4.1.2 MultimodalQA352

MultimodalQA (Talmor et al., 2021) contains multi-353

modal QA pairs across tables, texts, and images,354

with 16 question types, 13 of which require cross-355

modal retrieval and reasoning. As tables are outside356

the scope of our paper, following (Hu et al., 2022b)357

we focus on the subset of queries involving only358

text and image information, specifically selecting359

questions labeled as ‘TextQ’ or ‘ImageQ’. Each360

query typically requires 1 image and/or 1 text snip-361

pet to answer and is paired with around 20 visual362

and text distractors. Since test set labels are unavail-363

able, we report RAMQA results on the validation364

set. The answers are spans or short phrases, and365

the evaluation metrics are Exact Match (EM) and366

average F1 as described in (Dua et al., 2019).367

4.2 Baselines368

We compare RAMQA against SOTA models2 on369

WebQA and MultimodalQA in an distractor setting,370

i.e., the input documents are positives and hard371

negatives provided by the datasets, rather than the372

entire document corpus.373

4.2.1 AutoRouting374

AutoRouting (Talmor et al., 2021) converts multi-375

modal QA into unimodal QA by using a question-376

type classifier to identify the modality likely to377

contain the final answer. It directs the question and378

input sources to the appropriate QA module (textQ,379

tableQ, or imageQ) and extracts answer spans us-380

ing specialized sub-models. AutoRouting employs381

RoBERTa-large (Liu et al., 2019) for question-type382

classification as well as textQ and tableQ, while383

VILBERT-MT (Lu et al., 2019) handles imageQ384

with image features extracted by Faster R-CNN385

(Ren et al., 2015).386

4.2.2 VLP and VLP + VinVL387

Leveraging VinVL (Zhang et al., 2021) for image388

feature extraction, these transformer-based encoder-389

decoder models begin by concatenating each docu-390

ment with the question and employing a classifier391

2Note, neither MuRAG and PERQA have published their
code.

to estimate the selection probability of each doc- 392

ument. The selected documents, along with the 393

question, are then concatenated and fed into the 394

model for answer generation, using a beam search 395

with a size of 5. 396

4.2.3 MuRAG 397

MuRAG (Hu et al., 2022b) is pre-trained on a com- 398

bination of large-scale image-text and text-only 399

corpora. It retrieves the Top-K nearest neighbors 400

from a memory of image-text pairs using a query Q 401

from any modality. The retrieved results are com- 402

bined with Q and fed into an encoder-decoder for 403

answer generation. During fine-tuning, the ques- 404

tion is used as the query Q along with the Top-4 405

retrieved sources, and a beam search with size 2 406

is applied. MuRAG uses ViT-large (Dosovitskiy 407

et al., 2021) for image encoding and T5-base (Raf- 408

fel et al., 2019) for text encoding and answer gen- 409

eration. MuRAG is evaluated only on the text and 410

image subsets of MultimodalQA, excluding the 411

table modality. 412

4.2.4 SKURG 413

SKURG (Yang et al., 2023a) integrates evidence 414

features using entity relations and feeds them into a 415

transformer to generate key evidence and answers. 416

It employs OFA-base (Wang et al., 2022a) as the 417

image encoder and BART-base (Lewis et al., 2019) 418

for text and knowledge graph encoding. The BART 419

decoder is then used to generate the relevant docu- 420

ment IDs and answers from the encoded documents. 421

The BART-base model is pre-trained on SQuAD2.0 422

(Rajpurkar et al., 2018). For entity and relation ex- 423

traction, SKURG uses ELMo-based (Peters et al., 424

2018) NER (Peters et al., 2017) and OpenNRE 425

(Han et al., 2019), respectively. 426

4.2.5 PERQA 427

PERQA (Yang et al., 2023b) is a framework for ev- 428

idence retrieval and question answering. After pre- 429

processing all images by generating descriptions 430

using image captioning with OFA (Wang et al., 431

2022a) and object detection with Fast RCNN (Gir- 432

shick, 2015), it performs iterative pairwise ranking 433

using BERT (Devlin et al., 2019), followed by an 434

extra "evidence refinement" using pointwise rerank- 435

ing with Deberta-large (He et al., 2021). Once the 436

top candidate documents are retrieved, PERQA in- 437

tegrates them into a dialogue format and fine-tunes 438

a multi-modal LLM mPLUG-Owl (Ye et al., 2023), 439

to generate answers based on the retrieved docu- 440

ments and the question. 441
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Model QA-FL QA-Acc QA Retr-F1

VLP(Q-only) (2021) 34.9 22.2 13.4 –
VLP (2021) 42.6 36.7 22.6 68.9
VLP + VinVL (2021) 44.2 38.9 24.1 70.9
MuRAG (2022b) 55.7 54.6 36.1 74.6
SKURG (2023a) 55.4 57.1 37.7 88.2
PERQA (2023b) 61.7 63.9 44.4 89.6

RAMQA (ours) 64.1 66.6 48.1 88.4

Table 2: WebQA official test set results indicated on
leaderboard5 as of August 2024. VLP (Q-only) uses
only the question as input for VLP. Bold numbers indi-
cate best and underline the second-best score.

4.3 Implementation Details442

The backbone of RankLLaVA is based on the443

LLaVA-1.5-7B model3 (Liu et al., 2024). We added444

a linear layer to project the final layer’s end-of-445

sequence token representation into a scalar, as de-446

tailed in section 3.2. Parameter-efficient fine-tuning447

(PEFT) techniques, including Quantization (Jacob448

et al., 2017) and low-rank adaptation (LoRA) (Hu449

et al., 2022a), were used to fine-tune the model on a450

single NVIDIA A100 80GB GPU with a maximum451

input sequence length of 2048, a batch size of 8,452

and gradient accumulation steps of 4. With LoRA,453

only the linear layer parameters of the LLM were454

updated, while all other layers, including the visual455

encoder, were kept frozen.456

The backbone of RAMLLaVA is based on the457

LLaMA-3-70B model4 (Dubey et al., 2024). Fol-458

lowing the instruction tuning approach outlined in459

Section 3.3.2, we fine-tuned the model using sim-460

ilar PEFT methods. This enabled fine-tuning on461

a single NVIDIA A100 80GB GPU with a maxi-462

mum input sequence length of 8192 tokens. We463

employed a batch size of 2 with 16 gradient accu-464

mulation steps. The input data comprised the top465

15 ranked documents.466

4.4 Main Results467

We compare RAMQA against the most relevant468

methods, including SOTA models.469

Table 2 presents the results on WebQA. For the470

QA score, which is the most critical metric in the471

WebQA benchmark (described in Section 4.1.1),472

RAMQA outperforms all baselines, exceeding the473

3https://huggingface.co/llava-hf/llava-1.
5-7b-hf

4https://huggingface.co/meta-llama/
Meta-Llama-3-70B

5https://eval.ai/web/challenges/
challenge-page/1255/leaderboard/3168

Text Image All
Model EM F1 EM F1 EM

Q-only (2021) 15.4 18.4 11.0 15.6 13.8
AutoRouting (2021) 49.5 56.9 37.8 37.8 46.6
MuRAG (2022b) 60.8 67.5 58.2 58.2 60.2
SKURG (2023a) 66.7 72.7 56.1 56.1 64.2
PERQA (2023b) 69.7 74.1 54.7 60.3 62.8

RAMQA (ours) 79.5 85.5 67.0 67.0 70.6

Table 3: MultimodalQA dev-set results on the subset. Q-
only denotes using only the question as input for BART-
large. Bold numbers indicate best and underline the
second-best score.

Model QA-FL QA-Acc QA Retr-F1

RAMQA 63.4±0.7 66.2±0.4 47.5±0.6 88.3±0.1
w/o Perm 62.4±0.9 64.3±0.6 46.2±0.7 86.2±0.2
Retr-only Gen w/o Perm - - - 84.7±0.2
QA-only Gen 58.6±1.1 60.8±0.8 40.4±0.9 75.4±0.1

Table 4: Ablation study of RAMQA on the WebQA test
set. "Perm" refers to generative retrieval with permuta-
tion. "Retr-only Gen" and "QA-only Gen" indicate gen-
eration with only the retrieval objective and with only
the question-answering objective, respectively. The best
results for each metric are highlighted in bold. The re-
sults are averaged over three runs with different random
seeds.

SOTA PERQA by 8.3% overall. In terms of Flu- 474

ency, RAMQA surpasses PERQA by 3.9%, and in 475

Accuracy, it outperforms PERQA by 4.2%. These 476

improvements highlight the high fluency and accu- 477

racy of RAMQA’s generated answers. In retrieval 478

performance, RAMQA is on par with the SOTA 479

model PERQA. However, unlike PERQA, which re- 480

lies on textual information retrieval after extensive 481

image processing (generating captions and extract- 482

ing objects) as described in Section 4.2.5, RAMQA 483

employs true multi-modal IR, directly extracting 484

ranking features from images in the first-stage rank- 485

ing. 486

The MultimodalQA results are presented in Ta- 487

ble 3. RAMQA significantly outperforms all base- 488

lines. For text questions, our model achieves a 489

14.0% improvement in Exact Match (EM) over 490

the SOTA PERQA. For image questions, the gap 491

is even more pronounced, with a 15.1% improve- 492

ment over the SOTA MuRAG. Overall, RAMQA 493

surpasses the second-best PERQA by 9.9% in EM. 494
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Figure 4: Impact of Input Length on RAMLLaMA
Performance on the WebQA test set. The horizontal
axis(#Doc) represents the number of candidate docu-
ments from RankLLaVA’s output included in RAML-
LaMA’s input prompt during both training and testing.
We ensured that the input prompt length did not exceed
LLaMA3’s limit of 8096 tokens in any of the experi-
ments.

4.5 Ablation Studies495

4.5.1 Effectiveness of Permutation-Based496

Generative Retrieval and Multi-Task497

Objective Generation.498

In this section, we investigate the impact of499

Permutation-based Generative Retrieval and the500

multi-task objective generation on the final501

MRAQA results over the WebQA test set. As502

shown in Table 4, without the generative retrieval503

objective, our second-stage generation model504

achieves an overall QA score of only 40.4. The505

retrieval F1 score here reflects the ranking perfor-506

mance of our first-stage model, RankLLaVA. Docu-507

ments are selected if their binary classification con-508

fidence exceeds a specified threshold, determined509

through tuning on the WebQA development set.510

When we introduce the retrieval generation ob-511

jective during the fine-tuning of our second-stage512

generative model, both the QA score and retrieval513

F1 score see significant improvements. Specifically,514

the QA score increases by 14.4%, and the retrieval515

F1 score rises by 14.3%. This demonstrates the516

effectiveness of the multi-task objective generation517

in enhancing the model’s generative capabilities.518

Furthermore, by introducing the permutation of519

candidate documents in the training data, the re-520

trieval F1 score is boosted by an additional 2.6%,521

and the QA score improves by 4.1%. This indicates522

that permutation-based generative retrieval not only523

enhances the model’s retrieval performance but524

also contributes to a better understanding of con-525

text, thereby improving overall QA performance.526

4.5.2 Impact of Document Count on Ranking 527

Effectiveness. 528

We investigated the impact of the number of input 529

documents on the performance of our second-stage 530

generation model, RAMLLaMA. Figure 4 illus- 531

trates how varying the number of documents in 532

RAMLLaMA’s input affects its final performance. 533

We found that increasing the input document count 534

from 1 to 15 improved retrieval performance, sug- 535

gesting that the model benefited from the higher 536

recall provided by the larger document set. How- 537

ever, increasing the input to 20 documents resulted 538

in a performance decline. This drop is likely due 539

to the lack of additional recall from the top 20 540

retrieved documents compared to the top 15, com- 541

bined with the inclusion of less relevant documents, 542

which made it more challenging for RAMLLaMA 543

to process the input effectively, potentially leading 544

to overfitting on irrelevant details. 545

5 Conclusion 546

In this paper, we introduced RAMQA, a uni- 547

fied framework for Retrieval-Augmented Multi- 548

modal Question Answering that combines tra- 549

ditional learning-to-rank methods with genera- 550

tive permutation-enhanced ranking techniques to 551

address the challenges of multi-modal retrieval- 552

augmented question answering. By leveraging 553

state-of-the-art generative LLMs like LLaVA and 554

LLaMA, RAMQA significantly improves both re- 555

trieval accuracy and question-answering perfor- 556

mance across diverse data sources, including text 557

and images. 558

Experiments on two MRAQA benchmarks, We- 559

bQA and MultiModalQA, demonstrate significant 560

improvements compared to strong baselines, high- 561

lighting the effectiveness of our approach in en- 562

hancing multi-modal retrieval-augmented QA sys- 563

tems. The introduction of permutation-based gen- 564

erative retrieval and multi-task learning objectives 565

played a key role in these advancements, contribut- 566

ing to a better understanding of context and more 567

accurate information retrieval. 568

In conclusion, RAMQA sets a new benchmark 569

in multi-modal question answering, demonstrating 570

the effectiveness of combining traditional and gen- 571

erative approaches. We anticipate that RAMQA 572

and similar models will continue to advance the 573

capabilities of multi-modal information retrieval 574

and generation. 575
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Limitations576

While RAMQA demonstrates strong performance577

and introduces several innovative techniques in578

multi-modal question answering, it is important579

to acknowledge its limitations: (1) Dependency on580

High-Quality Multi-Modal Data: RAMQA’s per-581

formance is closely tied to the quality and diversity582

of the multi-modal data available during training.583

In scenarios where such data is scarce or noisy, the584

model’s ability to accurately retrieve and generate585

relevant answers may degrade. This limitation is586

particularly evident in domains where multi-modal587

datasets are limited or not well-structured. (2) Gen-588

eralization to Novel Domains: While RAMQA has589

demonstrated strong results on the WebQA and590

MultimodalQA datasets, its ability to generalize to591

entirely new domains or query types remains uncer-592

tain. The model may struggle with domain-specific593

terminology or data formats that were not encoun-594

tered during training, limiting its applicability in595

specialized fields. (3) Bias and Ethical Concerns:596

Despite its sophisticated design, RAMQA is not im-597

mune to biases present in the training data. These598

biases can be reflected in the retrieval and gener-599

ation processes, leading to outputs that may rein-600

force existing stereotypes or omit crucial perspec-601

tives. Addressing these ethical concerns requires602

further research and careful consideration.603

By recognizing these limitations, we hope to604

guide future research efforts aimed at overcom-605

ing these challenges and improving the robustness,606

scalability, and ethical integrity of multi-modal607

question answering systems like RAMQA.608
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A Training example for RAMLLaMA 1095

For this case study, we qualitatively evaluated the 1096

model’s capabilities by sampling examples from 1097

the WebQA development dataset. We compared 1098

the model’s outputs against the benchmark’s golden 1099

answer set and strong baseline models. 1100

Figure 5 illustrates a training example for 1101

RAMLLaMA, formatted following Stanford- 1102

Alpaca(Taori et al., 2023). 1103

B Case Study 1104

Figure 6 compares the outputs of RAMQA (our 1105

model) and MuRAG QA as reported in their paper. 1106

RAMQA correctly identified the document anno- 1107

tated in the golden set, which MuRAG missed, and 1108

also predicted an additional document. Although 1109

this second document isn’t in the golden set, it 1110

should be considered correct, as it contains crucial 1111

information. Even though it occupies only a small 1112

portion of the image, it provides the necessary de- 1113

tails to answer the question. 1114

Figure 7 presents an instance where RAMQA 1115

made a misprediction. Although the answer was 1116

absent from the benchmark’s golden set, it was 1117

factually correct. This highlights a limitation in 1118

the benchmark dataset, where the golden set may 1119

not fully encompass all valid answers. As a result, 1120

strict reliance on standard evaluation metrics may 1121

undervalue the model’s true performance. Future 1122

work should consider expanding the golden answer 1123

set and employing more flexible evaluation meth- 1124

ods, such as human judgment, for a more accurate 1125

assessment. 1126

Figure 8 shows another example of RAMQA’s 1127

misprediction. This error likely stems from the 1128

model’s difficulty in distinguishing between sim- 1129

ilarly named locations and their landmarks. For 1130

example, both New York City and Chicago have 1131

parks named Washington Square with fountains, 1132

but only New York’s park features an iconic arch. 1133

The model may have focused on the shared name 1134

rather than the unique characteristics of each loca- 1135

tion. This confusion could be due to misaligned 1136

image retrieval, a lack of contextual understanding, 1137

or overlapping training data. To prevent such errors, 1138

the model should prioritize distinctive features, like 1139

New York’s arch, when processing queries involv- 1140

ing similar entities. 1141
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Input:
“### Instruction:
First, identify and return all relevant Evidence IDs that can assist 
in answering the question. Next, attempt to answer the question 
based on the identified evidence. 

### Input:
Question: Does the Manx Loaghtan ram and the Zackel (racka) 
sheep both have twisted horns?

Context 0: Evidence ID: 30203912 
-- title: Manx Loaghtan Ram, 2 horns Manx Loaghtan 

ram with two horns 
-- Content: Manx Loaghtan Ram, 2 horns Manx 

Loaghtan ram with two horns . The image features a brown sheep 
with two curved horns, which are characteristic of a Manx 
Loaghtan ram. The horns are curved in a way that resembles the 
horns of a Gemsbok, a type of antelope. 

… 

Context 6: Evidence ID: 30060710 
-- title: Zackelschafe Tiergarten Bernburg 06-03-2008 

Zackel (racka) sheep, white, at Tiergarten Bernburg, Germany 
-- Content: Zackelschafe Tiergarten Bernburg 06-03-

2008 Zackel (racka) sheep, white, at Tiergarten Bernburg, 
Germany . The image features a group of five sheep standing next 
to each other in a grassy field. The horns of the Magyar Racka Juh 
are curved and pointy, which is a distinctive feature of this breed. 

…

### Response: ”

Output:
“*** RETRIEVL RESULT: 30060710;30203912
*** ANSWER: Yes, both Manx Loaghtan ram and Zackel(racka) 
sheep have twisted horns. <|end_of_text|>”

Figure 5: A Training data example of RAMLLaMA.

C Scientific Artifacts1142

The licenses for the resources used in this paper1143

are as follows: MultiModalQA (MIT License), We-1144

bQA (CC0-1.0 License), LLaVA (Llama 2 Com-1145

munity License), LLaMA (Llama 3 Community1146

License Agreement), and Huggingface Transform-1147

ers (Apache License 2.0). We have adhered to the1148

intended use of all referenced artifacts in this paper.1149
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Figure 6: Prediction Examples of RAMQA vs. MuRAG

Figure 7: An Example of RAMQA Mispredictions Caused by Incomplete Document Annotations.
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Figure 8: An Example of RAMQA Misprediction Due to Inability to Distinguish Similarly Named Locations
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