CIS 6930 Spring 26

Logo

Data Engineering at the University of Florida

NavigatorAI Setup Guide

NavigatorAI is UF’s AI platform providing access to multiple LLM models including GPT, Llama, Gemini, and Claude. This guide covers setup for the Toolkit API, which you’ll use for course assignments.

Services Overview

Service Description Access
NaviGator Chat Web interface for LLM conversations with custom datasets Students, Faculty, Staff
NaviGator Toolkit API access to LLM models Students, Faculty, Staff
NaviGator Tutor Personalized learning assistant Students, Faculty, Staff
NaviGator Notebook Document assistance with Gemini Students, Faculty, Staff

For this course, you will primarily use the NaviGator Toolkit for API access.

Getting Started

Step 1: Access the Platform

  1. Go to https://it.ufl.edu/ai/
  2. Click on “NaviGator Toolkit”
  3. Log in with your UF GatorLink credentials

Step 2: Generate an API Key

  1. Navigate to the API Key management section
  2. Click “Generate New API Key”
  3. Copy your API key and store it securely
  4. Never commit your API key to GitHub

Step 3: Set Up Your Environment

Store your API key as an environment variable:

# Add to your shell profile (~/.bashrc, ~/.zshrc, etc.)
export NAVIGATOR_API_KEY="your-api-key-here"

Or create a .env file in your project (add to .gitignore):

NAVIGATOR_API_KEY=your-api-key-here

Python Usage

Install Required Packages

uv add openai python-dotenv

Basic Example

import os

from dotenv import load_dotenv
from openai import OpenAI

# Load environment variables
load_dotenv()

# Initialize client with NavigatorAI endpoint
client = OpenAI(
    api_key=os.getenv("NAVIGATOR_API_KEY"),
    base_url="https://api.navigator.ufl.edu/v1"  # Update with actual endpoint
)

# Make a request
response = client.chat.completions.create(
    model="gpt-4",  # Or other available models
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is data engineering?"}
    ]
)

print(response.choices[0].message.content)

Available Models

The Toolkit provides access to multiple models:

Provider Models
OpenAI GPT-4, GPT-3.5-turbo
Meta Llama 2, Llama 3
Google Gemini
Anthropic Claude

Check the NavigatorAI documentation for the current list of available models and their identifiers.

Best Practices

Security

  1. Never hardcode API keys in your source code
  2. Add .env to .gitignore to prevent accidental commits
  3. Use environment variables or secrets management

Rate Limits

Cost Management

Troubleshooting

Common Issues

Authentication Error (401)

Rate Limit Error (429)

Model Not Found

Getting Help

Alternative: Local Models with Ollama

For development and testing, you can use local models via Ollama:

# Install Ollama
brew install ollama  # macOS
# or download from https://ollama.ai

# Pull a model
ollama pull llama2

# Run the model
ollama run llama2

Using Ollama with OpenAI-compatible API:

from openai import OpenAI

client = OpenAI(
    api_key="ollama",
    base_url="http://localhost:11434/v1"
)

response = client.chat.completions.create(
    model="llama2",
    messages=[{"role": "user", "content": "Hello!"}]
)

Resources


back